-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathnonlinear.rs
289 lines (264 loc) · 7.51 KB
/
nonlinear.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
// Some testcases are ported from https://github.com/secure-foundations/libraries/tree/master/src/NonlinearArithmetic
#![feature(rustc_private)]
#[macro_use]
mod common;
use common::*;
// Test #[verifier(nonlinear)]
test_verify_one_file! {
#[test] test1 verus_code! {
#[verifier(nonlinear)]
proof fn lemma_mul_upper_bound(x: int, x_bound: int, y: int, y_bound: int)
requires
x <= x_bound,
y <= y_bound,
0 <= x,
0 <= y,
ensures
x * y <= x_bound * y_bound,
{
}
} => Ok(())
}
test_verify_one_file! {
#[test] test2 verus_code! {
#[verifier(nonlinear)]
proof fn lemma_mul_stay_positive(x: int, y: int)
requires
0 <= x,
0 <= y,
ensures
0 <= x * y,
{
}
} => Ok(())
}
test_verify_one_file! {
#[test] test3 verus_code! {
#[verifier(nonlinear)]
proof fn lemma_inequality_after_mul(x: int, y: int, z: int)
requires
x <= y,
0 <= z,
ensures
x * z <= y * z,
{
}
} => Ok(())
}
test_verify_one_file! {
#[test] test4 verus_code! {
#[verifier(nonlinear)]
proof fn lemma_div_pos_is_pos(x: int, d: int)
requires
0 <= x,
0 < d,
ensures
0 <= x / d,
{
}
} => Ok(())
}
test_verify_one_file! {
#[test] test1_fails verus_code! {
#[verifier(nonlinear)]
proof fn wrong_lemma_1(x: int, y: int, z: int)
requires
x <= y,
0 <= z,
ensures
x * z < y * z, // FAILS
{
}
} => Err(e) => assert_one_fails(e)
}
test_verify_one_file! {
#[test] test2_fails verus_code! {
#[verifier(nonlinear)]
proof fn wrong_lemma_2(x: int, y: int, z: int)
requires
x > y,
3 <= z,
ensures
y * z > x, // FAILS
{
}
} => Err(e) => assert_one_fails(e)
}
// Test assert_nonlinear_by
test_verify_one_file! {
#[test] test5 verus_code! {
proof fn test5_bound_checking(x: u32, y: u32, z: u32)
requires
x <= 0xffff,
y <= 0xffff,
z <= 0xffff,
{
assert(x * z == mul(x, z)) by(nonlinear_arith)
requires
x <= 0xffff,
z <= 0xffff,
{
assert(0 <= x * z);
assert(x * z <= 0xffff * 0xffff);
}
assert(x * z == mul(x, z));
assert(y * z == mul(y, z)) by(nonlinear_arith)
requires
y <= 0xffff,
z <= 0xffff,
{
assert(0 <= y * z);
assert(y * z <= 0xffff * 0xffff);
}
assert(y * z == mul(y, z));
}
} => Ok(())
}
test_verify_one_file! {
#[test] test6 verus_code! {
proof fn test6(x: u32, y: u32, z: u32)
requires x < 0xfff
{
assert(add(mul(x, x), x) == mul(x, add(x, 1))) by(nonlinear_arith)
requires x < 0xfff
{
}
assert(add(mul(x, x), x) == mul(x, add(x, 1)));
assert(mul(x, y) == mul(y, x)) by(nonlinear_arith);
assert(mul(x, y) == mul(y, x));
}
} => Ok(())
}
test_verify_one_file! {
#[test] test_requires verus_code! {
proof fn test(x: nat, y: nat, z: nat) {
assert(x * x + x == x * (x + 1)) by(nonlinear_arith)
requires x < 0xfff // FAILS
{
}
assert(x * x + x == x * (x + 1));
}
} => Err(e) => assert_one_fails(e)
}
test_verify_one_file! {
#[test] test7 verus_code! {
proof fn test6(x: int, y: int, z: int) {
assert((x + y) * z == x * z + y * z) by(nonlinear_arith);
assert((x + y) * z == x * z + y * z);
assert((x - y) * z == x * z - y * z) by(nonlinear_arith);
assert((x - y) * z == x * z - y * z);
}
} => Ok(())
}
test_verify_one_file! {
#[test] test3_fails verus_code! {
proof fn test3_fails(x: int, y: int, z: int) {
assert(x * y == y * z) by(nonlinear_arith); // FAILS
}
} => Err(e) => assert_one_fails(e)
}
test_verify_one_file! {
#[test] test4_fails verus_code! {
proof fn test4_fails(x: u32, y: u32, z: u32) {
assert(x * z == (mul(x, z) as int)) by(nonlinear_arith); // FAILS
}
} => Err(e) => assert_one_fails(e)
}
test_verify_one_file! {
#[test] test_assert_nonlinear_by_in_nonlinear verus_code! {
#[verifier(nonlinear)]
proof fn test(x: u32)
requires x < 0xfff
{
assert(x * x + x == x * (x + 1)) by(nonlinear_arith)
requires x < 0xfff
{
}
assert(x * x + x == x * (x + 1));
}
} => Err(err) => assert_vir_error_msg(err, "assert_by_query not allowed in #[verifier::nonlinear] functions")
}
test_verify_one_file! {
#[test] test_negative verus_code! {
proof fn test6(x: int, y: int, z:int) {
assert((x + y) * z == x * z + y * z) by(nonlinear_arith);
assert(false); // FAILS
}
} => Err(e) => assert_one_fails(e)
}
test_verify_one_file! {
#[test] test_unexpected_vars verus_code! {
proof fn test6(x: int, y: int, z:int)
requires
y == 0,
z == 0,
{
assert(x + y == x) by(nonlinear_arith)
requires y == 0
{
assert(z == 0);
}
}
} => Err(err) => assert_vir_error_msg(err, "not mentioned in requires/ensures")
}
test_verify_one_file! {
#[test] test_complex_vars verus_code! {
proof fn test6(a1: int, a2: int) {
let (b1, b2) = if a1 <= a2 {
(a1, a2)
} else {
(a2, a1)
};
assert(b1 <= b2) by(nonlinear_arith)
requires b1 <= b2
{
}
}
} => Ok(())
}
test_verify_one_file! {
#[test] test_requires_no_block verus_code! {
proof fn test6(a1: int, a2: int) {
let (b1, b2) = if a1 <= a2 {
(a1, a2)
} else {
(a2, a1)
};
assert(b1 <= b2) by(nonlinear_arith)
requires b1 <= b2;
}
} => Ok(())
}
test_verify_one_file! {
#[test] test_new_vars verus_code! {
proof fn test6(x: int)
requires x == 5
{
assert({let z: int = 2; x * z == 10}) by(nonlinear_arith)
requires ({let z: int = 5; x == z})
{
let y: nat = mul(x as nat, 2);
assert(y == 10);
}
assert(x * 2 == 10);
}
fn test7(n: u32) {
loop {
assert(true) by (nonlinear_arith)
requires
({let q = n; q <= n})
{ }
break;
}
}
} => Ok(())
}
test_verify_one_file! {
#[ignore] // Z3 is too slow with this test
#[test] nlarith1 verus_code! {
fn test(x: int, y: int, z: int) {
assume(x * y == z && x != 0);
assert(z % x == 0) by(nonlinear_arith) requires x * y == z && x != 0 {}
}
} => Ok(())
}