-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpred_mod_without_merging.py
138 lines (108 loc) · 5.43 KB
/
pred_mod_without_merging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import jsonlines
import torch
from tqdm import tqdm
from coref.coref_model2 import CorefModel
from coref.tokenizer_customization import *
from coref import bert, conll, utils
# usage : python pred_mod_without_merging.py roberta litbank_splitted/jsonlines/english_test_head.jsonlines --weights 'data/roberta_(e30_2023.06.12_13.48).pt'
# pred.conll and gold.conll files written in the data/conll_logs dir, model wts loaded from data/
def build_doc(doc: dict, model: CorefModel) -> dict:
filter_func = TOKENIZER_FILTERS.get(model.config.bert_model,
lambda _: True)
token_map = TOKENIZER_MAPS.get(model.config.bert_model, {})
word2subword = []
subwords = []
word_id = []
for i, word in enumerate(doc["cased_words"]):
tokenized_word = (token_map[word]
if word in token_map
else model.tokenizer.tokenize(word))
tokenized_word = list(filter(filter_func, tokenized_word))
word2subword.append((len(subwords), len(subwords) + len(tokenized_word)))
subwords.extend(tokenized_word)
word_id.extend([i] * len(tokenized_word))
doc["word2subword"] = word2subword
doc["subwords"] = subwords
doc["word_id"] = word_id
doc["head2span"] = []
if "speaker" not in doc:
doc["speaker"] = ["_" for _ in doc["cased_words"]]
doc["word_clusters"] = []
doc["span_clusters"] = []
doc['cluster_emb'] = []
doc["span_clusters_res"] = []
return doc
if __name__ == "__main__":
argparser = argparse.ArgumentParser()
argparser.add_argument("experiment")
argparser.add_argument("input_file")
# argparser.add_argument("output_file")
argparser.add_argument("--config-file", default="config.toml")
argparser.add_argument("--batch-size", type=int,
help="Adjust to override the config value if you're"
" experiencing out-of-memory issues")
argparser.add_argument("--weights",
help="Path to file with weights to load."
" If not supplied, in the latest"
" weights of the experiment will be loaded;"
" if there aren't any, an error is raised.")
args = argparser.parse_args()
model = CorefModel(args.config_file, args.experiment)
if args.batch_size:
model.config.a_scoring_batch_size = args.batch_size
model.load_weights(path=args.weights, map_location="cpu",
ignore={"bert_optimizer", "general_optimizer",
"bert_scheduler", "general_scheduler"})
model.training = False
with jsonlines.open(args.input_file, mode="r") as input_data:
docs = [build_doc(doc, model) for doc in input_data]
# building the cluster embeddings for each splitted document
with torch.no_grad():
for doc in tqdm(docs, unit="docs"):
result, word_emb = model.run(doc)
doc["span_clusters_res"] = result.span_clusters
doc["word_clusters"] = result.word_clusters
clusters = doc["span_clusters_res"]
for cluster in clusters:
# you have to set a offset
cluster_i = []
for span in cluster:
span_embedding = None
start, end = span
for i in range(start, end):
if(span_embedding == None):
span_embedding = word_emb[i]
else:
span_embedding += word_emb[i]
span_embedding /= (end - start)
cluster_i.append(span_embedding)
cluster_i = torch.stack(cluster_i)
cluster_i = torch.mean(cluster_i, dim=0)
doc['cluster_emb'].append(cluster_i)
for key in ("word2subword", "subwords", "word_id", "head2span"):
del doc[key]
with torch.no_grad():
docs_new = {} #mapping for doc name to span clusters obtained after merging
for doc1, doc2 in list(zip(docs,docs[1:]))[::2]:
print(doc1["document_id"])
print(doc2["document_id"])
span_clusters_mapping = {}
clusters1 = doc1['span_clusters_res']
clusters2 = doc2['span_clusters_res']
offset = len(doc1['cased_words'])
clusters2 = [[(start + offset, end + offset) for start, end in tuple_list] for tuple_list in clusters2]
combined_span_clusters = sorted(clusters1 + clusters2)
doc_id = doc1["document_id"][:-2]
docs_new[doc_id] = combined_span_clusters
data_split = 'test'
docs = model._get_docs(model.config.__dict__[f"{data_split}_data"]) # in the data/ dir [you can change this is the config file] put the unsplitted jsonlines file!
with conll.open_(model.config, model.epochs_trained, data_split) \
as (gold_f, pred_f):
pbar = tqdm(docs, unit="docs", ncols=0)
for doc in pbar:
print(doc['document_id'])
doc_id = doc['document_id']
pred_span_clusters = docs_new[doc_id]
conll.write_conll(doc, doc["span_clusters"], gold_f)
conll.write_conll(doc, pred_span_clusters, pred_f) # will be written in data/conll_logs/ dir