-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpred_mod_4_no_merge.py
207 lines (153 loc) · 7.36 KB
/
pred_mod_4_no_merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# predict.py for a 4-way split of the doc with no merging
import argparse
import jsonlines
import torch
from tqdm import tqdm
from coref.coref_model2 import CorefModel
from coref.tokenizer_customization import *
from coref import bert, conll, utils
def build_cluster_emb(doc1, doc2, clusters, offset):
# offset is 0 for doc1, doc2
# offset is len*word1 + lenword2
words_emb1 = doc1["words_emb"]
words_emb2 = doc2["words_emb"]
word_emb = torch.cat((words_emb1, words_emb2), 0)
# task : see the wordsemb1 type
cluster_emb = []
for cluster in clusters:
cluster_i = []
for span in cluster:
span_embedding = None
start, end = span
start -= offset
end -= offset
for i in range(start, end):
if(span_embedding == None):
span_embedding = word_emb[i]
else:
span_embedding += word_emb[i]
span_embedding /= (end - start)
cluster_i.append(span_embedding)
cluster_i = torch.stack(cluster_i)
cluster_i = torch.mean(cluster_i, dim=0)
cluster_emb.append(cluster_i)
return cluster_emb
def build_doc(doc: dict, model: CorefModel) -> dict:
filter_func = TOKENIZER_FILTERS.get(model.config.bert_model,
lambda _: True)
token_map = TOKENIZER_MAPS.get(model.config.bert_model, {})
word2subword = []
subwords = []
word_id = []
for i, word in enumerate(doc["cased_words"]):
tokenized_word = (token_map[word]
if word in token_map
else model.tokenizer.tokenize(word))
tokenized_word = list(filter(filter_func, tokenized_word))
word2subword.append((len(subwords), len(subwords) + len(tokenized_word)))
subwords.extend(tokenized_word)
word_id.extend([i] * len(tokenized_word))
doc["word2subword"] = word2subword
doc["subwords"] = subwords
doc["word_id"] = word_id
doc["head2span"] = []
if "speaker" not in doc:
doc["speaker"] = ["_" for _ in doc["cased_words"]]
doc["word_clusters"] = []
doc["span_clusters"] = []
doc['cluster_emb'] = []
doc["span_clusters_res"] = []
doc["words_emb"] = []
return doc
if __name__ == "__main__":
argparser = argparse.ArgumentParser()
argparser.add_argument("experiment")
argparser.add_argument("input_file")
argparser.add_argument("output_file")
argparser.add_argument("--config-file", default="config.toml")
argparser.add_argument("--batch-size", type=int,
help="Adjust to override the config value if you're"
" experiencing out-of-memory issues")
argparser.add_argument("--weights",
help="Path to file with weights to load."
" If not supplied, in the latest"
" weights of the experiment will be loaded;"
" if there aren't any, an error is raised.")
args = argparser.parse_args()
model = CorefModel(args.config_file, args.experiment)
if args.batch_size:
model.config.a_scoring_batch_size = args.batch_size
model.load_weights(path=args.weights, map_location="cpu",
ignore={"bert_optimizer", "general_optimizer",
"bert_scheduler", "general_scheduler"})
model.training = False
with jsonlines.open(args.input_file, mode="r") as input_data:
docs = [build_doc(doc, model) for doc in input_data]
# First run
with torch.no_grad():
for doc in tqdm(docs, unit="docs"):
result, word_emb = model.run(doc) # first run to get the predicted clusters in a single split
print(doc['document_id'])
doc["words_emb"] = word_emb
doc["span_clusters_res"] = result.span_clusters # predicted span clusters
doc["word_clusters"] = result.word_clusters
clusters = doc["span_clusters_res"]
for cluster in clusters:
cluster_i = []
for span in cluster:
span_embedding = None
start, end = span
for i in range(start, end):
if(span_embedding == None):
span_embedding = word_emb[i]
else:
span_embedding += word_emb[i]
span_embedding /= (end - start)
cluster_i.append(span_embedding)
cluster_i = torch.stack(cluster_i)
cluster_i = torch.mean(cluster_i, dim=0)
doc['cluster_emb'].append(cluster_i)
# second_l = []
# for cluster in clusters:
# cluster_i = []
# for start, end in cluster:
# span_embedding = torch.mean(word_emb[start:end], dim=0)
# cluster_i.append(span_embedding)
# cluster_i = torch.stack(cluster_i)
# cluster_emb = torch.mean(cluster_i, dim=0)
# second_l.append(cluster_emb)
for key in ("word2subword", "subwords", "word_id", "head2span"):
del doc[key]
with torch.no_grad():
docs_new = {} #mapping for doc name to span clusters obtained after merging
for doc1, doc2, doc3, doc4 in zip(docs[::4], docs[1::4], docs[2::4], docs[3::4]):
span_clusters_mapping1 = {} # for doc 1 and 2
span_clusters_mapping2 = {} # for doc 3 and 4
cluster_emb1 = doc1['cluster_emb']
clusters1 = doc1['span_clusters_res']
cluster_emb2 = doc2['cluster_emb']
clusters2 = doc2['span_clusters_res']
cluster_emb3 = doc3['cluster_emb']
clusters3 = doc3['span_clusters_res']
cluster_emb4 = doc4['cluster_emb']
clusters4 = doc4['span_clusters_res']
offset1 = 0
offset2 = len(doc1['cased_words'])
offset3 = offset2 + len(doc2['cased_words'])
offset4 = offset3 + len(doc3['cased_words'])
clusters2 = [[(start + offset2, end + offset2) for start, end in tuple_list] for tuple_list in clusters2]
clusters3 = [[(start + offset3, end + offset3) for start, end in tuple_list] for tuple_list in clusters3]
clusters4 = [[(start + offset4, end + offset4) for start, end in tuple_list] for tuple_list in clusters4]
combined_span_clusters = sorted(clusters1 + clusters2 + clusters3 + clusters4)
doc_id = doc1["document_id"][:-2]
docs_new[doc_id] = combined_span_clusters
data_split = 'test'
docs = model._get_docs(model.config.__dict__[f"{data_split}_data"])
with conll.open_(model.config, model.epochs_trained, data_split) \
as (gold_f, pred_f):
pbar = tqdm(docs, unit="docs", ncols=0)
for doc in pbar:
doc_id = doc['document_id']
pred_span_clusters = docs_new[doc_id]
conll.write_conll(doc, doc["span_clusters"], gold_f)
conll.write_conll(doc, pred_span_clusters, pred_f)