-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_to_jsonlines_litbank.py
457 lines (381 loc) · 16.5 KB
/
convert_to_jsonlines_litbank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import argparse
from collections import defaultdict
from itertools import chain
import os
import re
import shutil
import subprocess
import sys
from typing import Dict, Generator, List, TextIO, Union
import jsonlines
from tqdm import tqdm
DATA_SPLITS = ["development", "test", "train"]
DEPS_FILENAME = "deps.conllu"
DEPS_IDX_FILENAME = "deps.index"
DEP_SENT_PATTERN = re.compile(r"(?:^\d.+$\n?)+", flags=re.M)
# SENT_PATTERN = re.compile(r"(?:^(?:\w+\/){3}.+$\n?)+", flags=re.M)
# SENT_PATTERN = re.compile(r"\n\n", flags=re.M)
SENT_PATTERN = re.compile(r"(?:^\d.+$\n?)+", flags=re.M)
class CorefSpansHolder:
"""
A simple container to process coreferent spans line by line
(as previous information might be needed)
self.starts contains word indices of span starts
self.spans contains spans that have been built
Both dictionaries use entity indices as keys.
"""
def __init__(self):
self.starts = defaultdict(lambda: [])
self.spans = defaultdict(lambda: [])
def __iter__(self):
for start_lst in self.starts.values():
assert len(start_lst) == 0
return iter(self.spans.values())
def add(self, coref_info: str, word_id: int):
"""
Examples of coref_info: "(50)", "(50", "50)", "(50)|(80" etc
"""
coref_info = coref_info.split("|")
for ci in coref_info:
self._add_one(ci, word_id)
def _add_one(self, coref_info: str, word_id: int):
if coref_info[0] == "(":
if coref_info[-1] == ")":
entity_id = int(coref_info[1:-1])
self.spans[entity_id].append([word_id, word_id + 1])
else:
entity_id = int(coref_info[1:])
self.starts[entity_id].append(word_id)
elif coref_info[-1] == ")":
entity_id = int(coref_info[:-1])
self.spans[entity_id].append(
[self.starts[entity_id].pop(), word_id + 1])
else:
raise ValueError(f"Invalid coref_info: {coref_info}")
def build_jsonlines(data_dir: str,
out_dir: str,
tmp_dir: str) -> None:
"""
Builds a file for each data split where each line corresponds
to a document.
"""
print("Building jsonlines...")
data_dir = os.path.normpath(data_dir)
fidx = open(os.path.join(tmp_dir, DEPS_IDX_FILENAME),
mode="r", encoding="utf8")
out = {split_type: jsonlines.open(
os.path.join(out_dir, f"english_{split_type}.jsonlines"),
mode="w", compact=True
) for split_type in DATA_SPLITS}
# This here is memory-unfriendly, but should be fine for most
with open(os.path.join(tmp_dir, DEPS_FILENAME),
mode="r", encoding="utf8") as fgold:
gold_sents_gen = re.finditer(DEP_SENT_PATTERN, fgold.read())
for line in fidx:
n_sents, filename = line.rstrip().split("\t")
n_sents = int(n_sents)
sents = [next(gold_sents_gen).group(0) for _ in range(n_sents)]
data = build_one_jsonline(filename, sents)
# if(data == -1): continue
out[get_split_type(data_dir, filename)].write(data)
fidx.close()
for fileobj in out.values():
fileobj.close()
def build_one_jsonline(filename: str,
parsed_sents: List[str]) -> Dict[str, Union[list, str]]:
"""
Returns a dictionary of the following structure:
document_id: str,
cased_words: [str, ...] # words
sent_id: [int, ...] # word id to sent id
part_id: [int, ...] # word id to part id
speaker: [str, ...] # word id to speaker
pos: [str, ...] # word id to POS
deprel: [str, ...] # word id to dep. relation
head: [int, ...] # word id to head, None for root
clusters: [[[int, int], ...], ...] # list of clusters, where each
cluster is
a list of spans of words
"""
with open(filename, mode="r", encoding="utf8") as f:
sents = re.findall(SENT_PATTERN, f.read())
# # print(f'len(sents) : {len(sents)}')
# # print(f'len(parsed_sents) : {len(parsed_sents)}')
# if(len(sents) != len(parsed_sents)):
# # for x in sents:
# # print(x)
# # print('\n\n')
# # for x in parsed_sents:
# # print(x)
# return -1
# # print(sents)
# # print(parsed_sents)
assert len(sents) == len(parsed_sents)
data = {
"document_id": None,
"cased_words": [],
"sent_id": [],
"part_id": [],
"speaker": [],
"pos": [],
"deprel": [],
"head": [],
"clusters": []
}
coref_spans = CorefSpansHolder()
total_words = 0
# to_be_removed = [] # for sentences containing hyphenated tokens
# for sent_id, sources in enumerate(zip(sents, parsed_sents)):
# # each sent is a token of a sentence
# sent, parsed_sent = [s.splitlines() for s in sources]
# # print(f'len(sent) : {len(sent)}')
# # print(f'len(parsed_sent) : {len(parsed_sent)}')
# if( len(sent) != len(parsed_sent)):
# # print(sent)
# # print('-------------------------\n\n')
# # print(parsed_sent)
# # sents.pop(sent_id)
# sents[sent_id] = -1
# parsed_sents[sent_id] = -1
# # parsed_sents.pop(sent_id)
# # print(f'removed')
# sents = [x for x in sents if x!=-1]
# parsed_sents = [x for x in parsed_sents if x!=-1]
for sent_id, sources in enumerate(zip(sents, parsed_sents)):
# each sent is a token of a sentence
sent, parsed_sent = [s.splitlines() for s in sources]
# print(f'len(sent) : {len(sent)}')
# print(f'len(parsed_sent) : {len(parsed_sent)}')
assert len(sent) == len(parsed_sent)
for s_word, p_word in zip(sent, parsed_sent):
s_cols = s_word.split()
p_cols = p_word.split('\t')
document_id = s_cols[0]
part_id = int(s_cols[1])
word_id = total_words + int(s_cols[2]) # continuous word_id
word = s_cols[3]
speaker = s_cols[9]
coref_info = s_cols[-1]
pos = p_cols[3]
deprel = p_cols[7]
# DS indexing starts with 1, zero is reserved for root
# Converting word_id to continuous id, setting root head to None
head = int(p_cols[6]) - 1
head = None if head < 0 else total_words + head
if coref_info != "_":
coref_spans.add(coref_info, word_id)
if data["document_id"] is None:
data["document_id"] = document_id
else:
assert data["document_id"] == document_id
data["cased_words"].append(word)
data["part_id"].append(part_id)
data["sent_id"].append(sent_id)
data["speaker"].append(speaker)
data["pos"].append(pos)
data["deprel"].append(deprel)
data["head"].append(head)
total_words += len(sent)
data["clusters"] = list(coref_spans)
return data
def convert_con_to_dep(temp_dir: str, filenames: Dict[str, List[str]]) -> None:
"""
Runs stanford parser on filenames in temp_dir to convert
consituency trees to Universal Dependencies.
"""
print("Converting constituents to dependencies...")
cmd = ("java -cp downloads/stanford-parser.jar"
" edu.stanford.nlp.trees.EnglishGrammaticalStructure"
" -basic -keepPunct -conllx -treeFile"
" FILENAME").split()
for data_split, filelist in filenames.items():
for filename in tqdm(filelist, ncols=0, desc=data_split, unit="docs"):
temp_filename = os.path.join(temp_dir, filename)
cmd[-1] = temp_filename
with open(temp_filename + "_dep", mode="w") as out:
subprocess.run(cmd, check=True, stdout=out)
print()
def extract_trees_from_file(fileobj: TextIO) -> Generator[str, None, None]:
# Convert conll to text file
print(fileobj.name)
txt_file_path = os.path.join(fileobj.name[:-14] + ".txt")
# txt_file_path = os.path.join(conll_file[:-11] + ".txt")
txt_file = open(txt_file_path, "w")
for line in fileobj:
line = line.lstrip()
if not line:
txt_file.write("\n")
continue
if not line or line[0] == "#":
continue
columns = line.split()
word = columns[3]
txt_file.write(word + " ")
txt_file.close()
# Run Stanford Parser command
parser_dir = "downloads/stanford-parser-full-2020-11-17" # Replace with actual path
parser_cmd = f"java -cp '{parser_dir}/*' edu.stanford.nlp.parser.lexparser.LexicalizedParser -tokenized -sentences newline -outputFormat 'penn' edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz {txt_file_path}"
process = subprocess.Popen(parser_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = process.communicate()
# Clean up temporary files
os.remove(txt_file_path)
if process.returncode == 0:
return stdout.decode("utf-8")
else:
print(f"An error occurred while running the Stanford Parser: {stderr.decode('utf-8')}")
return ""
def extract_trees_to_files(dest_dir: str,
filenames: Dict[str, List[str]]) -> None:
"""
Creates files names like filenames in dest_dir, writing to each file
constituency trees line by line.
"""
for filelist in filenames.values():
for filename in filelist:
with open(filename, mode="r", encoding="utf8") as f_to_read:
temp_path = os.path.join(dest_dir, filename)
assert not os.path.isfile(temp_path)
temp_dir = os.path.split(temp_path)[0]
os.makedirs(temp_dir, exist_ok=True)
with open(temp_path, mode="w", encoding="utf8") as f_to_write:
f_to_write.write(extract_trees_from_file(f_to_read))
def get_filenames(path: str) -> Generator[str, None, None]:
"""
Yields all filenames in a directory in a recursive manner.
"""
for filename in sorted(os.listdir(path)):
full_filename = os.path.join(path, filename)
if os.path.isdir(full_filename):
yield from get_filenames(full_filename)
else:
yield full_filename
def get_conll_filenames(data_dir: str) -> Dict[str, List[str]]:
"""
Returns a dictionary {data_split: [filename, ...], ...}, where data_split
is one of "development", "test", "train" and filename is
a full path to _gold_conll file
"""
conll_filenames = {}
for data_split in DATA_SPLITS:
data_split_dir = os.path.join(data_dir, data_split)
conll_filenames[data_split] = [
filename for filename in get_filenames(data_split_dir)
if filename.endswith("gold_conll")
]
return conll_filenames
def get_split_type(data_dir: str, query_path: str) -> str:
"""
Returns the split type of query path, where it is one of the types
listed in DATA_SPLITS. Raises ValueError if no type could be determined.
"""
query_path = os.path.normpath(query_path)
for split_type in DATA_SPLITS:
if query_path[len(data_dir) + 1:].startswith(split_type):
return split_type
raise ValueError("Query path does not contain split type information!")
def merge_dep_files(temp_dir: str, filenames: Dict[str, List[str]]) -> None:
"""
Writes the contents of all files in filenames into one file,
builds its index in a separate file.
"""
fout = open(os.path.join(temp_dir, DEPS_FILENAME), mode="w")
fidx = open(os.path.join(temp_dir, DEPS_IDX_FILENAME), mode="w")
for filelist in filenames.values():
for filename in filelist:
full_path = os.path.join(temp_dir, filename + "_dep")
with open(full_path, mode="r", encoding="utf8") as f:
sents = re.findall(DEP_SENT_PATTERN, f.read())
fidx.write(f"{len(sents)}\t{filename}\n")
fout.write("\n".join(sents))
fout.write("\n")
fout.close()
fidx.close()
def split_jsonlines(out_dir: str,
tmp_dir: str,
language: str = "english") -> None:
""" Splits jsonlines located in tmp_dir and writes them to out_dir.
Splitting means separating different parts of the same document into
multiple jsonlines. """
to_split = {split_type: jsonlines.open(
os.path.join(tmp_dir, f"{language}_{split_type}.jsonlines"),
mode="r") for split_type in DATA_SPLITS}
out = {split_type: jsonlines.open(
os.path.join(out_dir, f"{language}_{split_type}.jsonlines"),
mode="w", compact=True
) for split_type in DATA_SPLITS}
for split_type, jsonlines_to_split in to_split.items():
for doc in jsonlines_to_split:
for part in split_one_jsonline(doc):
out[split_type].write(part)
for f in chain(to_split.values(), out.values()):
f.close()
def split_one_jsonline(doc: dict):
if doc["part_id"][0] == doc["part_id"][-1]:
doc["part_id"] = doc["part_id"][0]
return [doc]
part_starts = [0]
parts = [doc["part_id"][0]]
for i, part_id in enumerate(doc["part_id"]):
if part_id != parts[-1]:
part_starts.append(i)
parts.append(part_id)
split_docs = []
for i in range(len(parts)):
start = part_starts[i]
if i < len(parts) - 1:
end = part_starts[i + 1]
else:
end = len(doc["cased_words"])
sent_start = doc["sent_id"][start]
split_doc = {
"document_id": doc["document_id"],
"cased_words": doc["cased_words"][start:end],
"sent_id": [s - sent_start for s in doc["sent_id"][start:end]],
"part_id": doc["part_id"][start:end][0],
"speaker": doc["speaker"][start:end],
"pos": doc["pos"][start:end],
"deprel": doc["deprel"][start:end],
"head": [(h - start) if h is not None else h
for h in doc["head"][start:end]],
"clusters": []
}
for cluster in doc["clusters"]:
split_cluster = []
for span_start, span_end in cluster:
if span_start >= start and span_start < end:
assert span_end > span_start and span_end <= end
split_cluster.append([span_start - start,
span_end - start])
if split_cluster:
split_doc["clusters"].append(split_cluster)
split_docs.append(split_doc)
return split_docs
if __name__ == "__main__":
argparser = argparse.ArgumentParser(
description="Converts conll-formatted files to json.")
argparser.add_argument("conll_dir", help="The root directory of"
" conll-formatted OntoNotes corpus.")
argparser.add_argument("--out-dir", default=".", help="The directory where"
" the output jsonlines will be written.")
argparser.add_argument("--tmp-dir", default="temp", help="A directory to"
" keep temporary files in."
" Defaults to 'temp'.")
argparser.add_argument("--keep-tmp-dir", action="store_true", help="If set"
", the temporary directory will not be deleted.")
args = argparser.parse_args()
if os.path.exists(args.tmp_dir):
response = input(f"{args.tmp_dir} already exists!"
f" Enter 'yes' to delete it or anything to exit: ")
if response != "yes":
sys.exit()
shutil.rmtree(args.tmp_dir)
os.makedirs(args.tmp_dir)
data_dir = os.path.join(args.conll_dir, "")
conll_filenames = get_conll_filenames(data_dir)
extract_trees_to_files(args.tmp_dir, conll_filenames)
convert_con_to_dep(args.tmp_dir, conll_filenames)
merge_dep_files(args.tmp_dir, conll_filenames)
build_jsonlines(data_dir, args.tmp_dir, args.tmp_dir)
split_jsonlines(args.out_dir, args.tmp_dir)
if not args.keep_tmp_dir:
shutil.rmtree(args.tmp_dir)