-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
212 lines (167 loc) · 7.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import rawpy
import imageio
from utils import ensure_dir, file_message, files
import cv2
import numpy as np
from PIL import Image
import shutil
import json
import os
import pickle
DIR = "./photos/plant1_20180615/entire_plant"
APP_DIR = "C:/Users/Breght/Documents/Doctoraat/Annotator"
RAW_DIR = DIR + "/raw"
IMG_DIR = DIR + "/images"
ANN_DIR = DIR + "/annotations"
CAL_DIR = DIR + "/calibration"
UND_DIR = DIR + "/undistorted"
UNDCR_DIR = DIR + "/undistorted_cropped"
ARUCO_DIR = DIR + "/ArUco"
RESIZE_DIR = DIR + "/resized"
IMG_TRANSFER_DIR = DIR + "/img_transfer"
ANN_TRANSFER_DIR = DIR + "/ann_transfer"
def raw2jpg(in_f, out_f):
with rawpy.imread(in_f) as raw:
rgb = raw.postprocess()
imageio.imsave(out_f, rgb)
file_message(out_f)
def batch_raw2jpg(in_dir=RAW_DIR, out_dir=IMG_DIR):
ensure_dir(out_dir)
for in_f, out_f in files(in_dir=in_dir, out_dir=out_dir, in_ext=".nef", out_ext=".jpg"):
raw2jpg(in_f, out_f)
def threshold_segmentation(in_f, out_f, limits, colour_space="HSV"):
img = cv2.imread(in_f, 1)
if colour_space == "BGR":
cvt = img.copy()
elif colour_space == "LAB":
cvt = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
elif colour_space == "HSV":
cvt = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
else:
cvt = img.copy()
limits = np.array(list(zip(*limits)))
mask = cv2.inRange(cvt, limits[0], limits[1])
mask = (mask / 255).astype(int)
encode_segmentation(mask, out_f)
file_message(out_f)
def encode_segmentation(segm, filename):
Image.fromarray(np.stack([
np.bitwise_and(segm, 255),
np.bitwise_and(segm >> 8, 255),
np.bitwise_and(segm >> 16, 255),
], axis=2).astype(np.uint8)).save(filename)
def decode_segmentation(filename):
encoded = np.array(Image.open(filename))
annotation = np.bitwise_or(np.bitwise_or(
encoded[:, :, 0].astype(np.uint32),
encoded[:, :, 1].astype(np.uint32) << 8),
encoded[:, :, 2].astype(np.uint32) << 16)
return annotation
def batch_threshold_segmentation(limits=([0, 255], [54, 255], [0, 255]), colour_space="HSV", in_dir=IMG_DIR, out_dir=ANN_DIR):
ensure_dir(out_dir)
for in_f, out_f in files(in_dir=in_dir, out_dir=out_dir, in_ext=".jpg", out_ext=".png"):
threshold_segmentation(in_f, out_f, limits, colour_space)
def undistortion_parameters(cal_f):
dims = (7, 9)
coords_3d = np.zeros((dims[0]*dims[1], 3), np.float32)
coords_3d[:, :2] = np.mgrid[0:dims[0], 0:dims[1]].T.reshape(-1, 2)
squares_3d = []
squares_2d = []
img = cv2.imread(cal_f, 0)
ret, img = cv2.threshold(img, 80, 255, cv2.THRESH_BINARY)
ret, corners = cv2.findChessboardCorners(img, dims, None)
if ret:
squares_3d.append(coords_3d)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
corners = cv2.cornerSubPix(img, corners, (11, 11), (-1, -1), criteria)
squares_2d.append(corners)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(squares_3d, squares_2d, img.shape[::-1], None, None)
h, w = img.shape[:2]
newmtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h))
mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newmtx, (w, h), 5)
return mapx, mapy, roi
else:
raise Exception("Chessboard detection failed")
def undistortion(in_f, out_f, mapx, mapy, roi, crop=True):
img = cv2.imread(in_f, 1)
undist = cv2.remap(img, mapx, mapy, cv2.INTER_LINEAR)
if crop:
x, y, w, h = roi
undist = undist[y:y+h, x:x+w]
cv2.imwrite(out_f, undist)
file_message(out_f)
def batch_undistortion(cal_dir=CAL_DIR, in_dir=IMG_DIR, out_dir=UND_DIR, crop=True):
ensure_dir(out_dir)
cal_f = files(dir=cal_dir, ext=".jpg")[0]
mapx, mapy, roi = undistortion_parameters(cal_f)
for in_f, out_f in files(in_dir=in_dir, out_dir=out_dir, in_ext=".jpg", out_ext=".jpg"):
undistortion(in_f, out_f, mapx, mapy, roi, crop)
def detect_markers(in_f, out_f, aruco_dict, aruco_params, show=False):
img = cv2.imread(in_f, cv2.IMREAD_COLOR)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
corners, ids, rejected = cv2.aruco.detectMarkers(gray, aruco_dict, parameters=aruco_params)
with open(out_f, "wb") as out:
pickle.dump([corners, ids, rejected], out)
file_message(out_f)
if show:
img_with_aruco = cv2.aruco.drawDetectedMarkers(img, corners, ids, (0, 255, 0))
cv2.imshow("aruco", img_with_aruco)
cv2.waitKey(0)
def batch_detect_markers(in_dir=UNDCR_DIR, out_dir=ARUCO_DIR, show=True):
ensure_dir(out_dir)
aruco_dict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_7X7_1000)
aruco_params = cv2.aruco.DetectorParameters_create()
for in_f, out_f in files(in_dir=in_dir, out_dir=out_dir, in_ext=".jpg", out_ext=".pkl"):
detect_markers(in_f, out_f, aruco_dict=aruco_dict, aruco_params=aruco_params, show=show)
def resize(in_f, out_f, ratio=.5):
img = cv2.imread(in_f, 1)
dim = (int(ratio * img.shape[1]), int(ratio * img.shape[0]))
resized = cv2.resize(img, dim, interpolation=cv2.INTER_AREA)
cv2.imwrite(out_f, resized)
file_message(out_f)
def batch_resize(in_dir, out_dir, ratio=.5):
ensure_dir(out_dir)
for in_f, out_f in files(in_dir=in_dir, out_dir=out_dir, in_ext=".jpg", out_ext=".jpg"):
resize(in_f, out_f, ratio)
for in_f, out_f in files(in_dir=in_dir, out_dir=out_dir, in_ext=".png", out_ext=".png"):
resize(in_f, out_f, ratio)
def prepare_annotator(img_dir=IMG_DIR, ann_dir=ANN_DIR, app_dir=APP_DIR, classes=("background", "plant", "panicle")):
img_out_dir = app_dir + "/data/images"
for f in files(img_out_dir, ".jpg"):
os.remove(f)
for f in files(img_dir, ".jpg"):
shutil.copy(f, img_out_dir)
file_message(img_out_dir + "/" + os.path.basename(f))
ann_out_dir = app_dir + "/data/annotations"
for f in files(ann_out_dir, ".png"):
os.remove(f)
for f in files(ann_dir, ".png"):
shutil.copy(f, ann_out_dir)
file_message(ann_out_dir + "/" + os.path.basename(f))
jsonfile = files(app_dir + "/data", ".json")[0]
with open(jsonfile, "r") as read_file:
data = json.load(read_file)
data["labels"] = classes
data["imageURLs"] = ["data/images/" + os.path.basename(f) for f in files(img_out_dir, ".jpg")]
data["annotationURLs"] = ["data/annotations/" + os.path.basename(f) for f in files(ann_out_dir, ".png")]
with open(jsonfile, "w") as write_file:
json.dump(data, write_file)
file_message(jsonfile)
if __name__ == "__main__":
# step 1: convert images from raw to jpeg
batch_raw2jpg(RAW_DIR, IMG_DIR)
batch_raw2jpg(CAL_DIR, CAL_DIR)
# step 2: make images smaller for more convenient use in annotator tool
batch_resize(IMG_DIR, RESIZE_DIR, .5)
# step 3: do the segmentation of the resized images
batch_threshold_segmentation(limits=[[0, 255], [54, 255], [0, 255]], colour_space="HSV", in_dir=RESIZE_DIR, out_dir=ANN_DIR)
# step 4: prepare the annotator tool (give the tool the images and annotations)
# first create the IMG_TRANSFER_DIR and ANN_TRANSFER_DIR directories,
# and move some images and corresponding annotations in the folder,
# then run the prepare_annotator function
prepare_annotator(IMG_TRANSFER_DIR, ANN_TRANSFER_DIR, APP_DIR, ("background", "plant", "panicle"))
# step 5: do undistortion
batch_undistortion(CAL_DIR, IMG_DIR, UND_DIR, crop=False)
batch_undistortion(CAL_DIR, IMG_DIR, UNDCR_DIR, crop=True)
# step 6: detect markers
batch_detect_markers(UNDCR_DIR, ARUCO_DIR)