forked from manhofer/Line3Dpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimization.cc
306 lines (260 loc) · 11.3 KB
/
optimization.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#include "optimization.h"
#ifdef L3DPP_CERES
namespace L3DPP
{
//------------------------------------------------------------------------------
void LineOptimizer::optimize()
{
if(clusters3D_->size() == 0)
return;
// init CERES data structures
size_t num_lines = clusters3D_->size();
size_t num_cams = views_.size();
double* lines = new double[num_lines * LINE_SIZE];
double* tmp_pts = new double[num_lines * 6];
double* cameras = new double[num_cams * CAM_PARAMETERS_SIZE];
double* intrinsics = new double[num_cams * INTRINSIC_SIZE];
// initialize problem
ceres::Problem* problem = new ceres::Problem();
std::vector<bool> keep_const(clusters3D_->size());
// lines
#ifdef L3DPP_OPENMP
#pragma omp parallel for
#endif //L3DPP_OPENMP
for(size_t i=0; i<clusters3D_->size(); ++i)
{
L3DPP::LineCluster3D LC = clusters3D_->at(i);
// convert to Plücker
Eigen::Vector3d l = LC.seg3D().P2()-LC.seg3D().P1();
l.normalize();
Eigen::Vector3d m = (0.5*(LC.seg3D().P1()+LC.seg3D().P2())).cross(l);
// convert to Cayley [Zhang and Koch, J. Vis. Commun. Image R., 2014]
Eigen::Matrix3d Q;
Eigen::Vector3d e1,e2;
if(m.norm() < L3D_EPS)
{
// compute nullspace of l'
Eigen::FullPivLU<Eigen::MatrixXd> lu_decomp(l.transpose());
Eigen::MatrixXd e = lu_decomp.kernel();
e1 = Eigen::Vector3d(e(0,0),e(1,0),e(2,0));
e2 = Eigen::Vector3d(e(0,1),e(1,1),e(2,1));
}
else
{
e1 = m.normalized();
e2 = (l.cross(m)).normalized();
}
Q(0,0) = l(0); Q(0,1) = e1(0); Q(0,2) = e2(0);
Q(1,0) = l(1); Q(1,1) = e1(1); Q(1,2) = e2(1);
Q(2,0) = l(2); Q(2,1) = e1(2); Q(2,2) = e2(2);
Eigen::Matrix3d sx = (Q-Eigen::MatrixXd::Identity(3,3))*((Q+Eigen::MatrixXd::Identity(3,3)).inverse());
Eigen::Vector3d s(sx(2,1),sx(0,2),sx(1,0));
double omega = m.norm();
if(isnan(s(0)) || isnan(s(1)) || isnan(s(2)) || isnan(omega))
{
// symmetric line coords... do not bundle
lines[i * LINE_SIZE + 0] = -1;
lines[i * LINE_SIZE + 1] = 0;
lines[i * LINE_SIZE + 2] = 0;
lines[i * LINE_SIZE + 3] = 0;
// set constant
keep_const[i] = true;
}
else
{
lines[i * LINE_SIZE + 0] = omega;
lines[i * LINE_SIZE + 1] = s(0);
lines[i * LINE_SIZE + 2] = s(1);
lines[i * LINE_SIZE + 3] = s(2);
// bundle
keep_const[i] = false;
}
tmp_pts[i * 6 + 0] = LC.seg3D().P1().x();
tmp_pts[i * 6 + 1] = LC.seg3D().P1().y();
tmp_pts[i * 6 + 2] = LC.seg3D().P1().z();
tmp_pts[i * 6 + 3] = LC.seg3D().P2().x();
tmp_pts[i * 6 + 4] = LC.seg3D().P2().y();
tmp_pts[i * 6 + 5] = LC.seg3D().P2().z();
}
// cameras & intrinsics
std::map<unsigned int,size_t> cam_global2local;
std::map<unsigned int,L3DPP::View*>::const_iterator it = views_.begin();
for(size_t i=0; it!=views_.end(); ++it,++i)
{
// set local ID
cam_global2local[it->first] = i;
// camera (rotation and center)
L3DPP::View* v = it->second;
Eigen::Matrix3d rot = v->R();
double rotation[9] = {rot(0,0), rot(1,0), rot(2,0),
rot(0,1), rot(1,1), rot(2,1),
rot(0,2), rot(1,2), rot(2,2)};
double axis_angle[3];
ceres::RotationMatrixToAngleAxis(rotation, axis_angle);
cameras[(i*CAM_PARAMETERS_SIZE) + 0] = axis_angle[0];
cameras[(i*CAM_PARAMETERS_SIZE) + 1] = axis_angle[1];
cameras[(i*CAM_PARAMETERS_SIZE) + 2] = axis_angle[2];
cameras[(i*CAM_PARAMETERS_SIZE) + 3] = (v->C())[0];
cameras[(i*CAM_PARAMETERS_SIZE) + 4] = (v->C())[1];
cameras[(i*CAM_PARAMETERS_SIZE) + 5] = (v->C())[2];
// intrinsics -> cof(K)
double fx = (v->K())(0,0);
double fy = (v->K())(1,1);
double px = (v->K())(0,2);
double py = (v->K())(1,2);
intrinsics[(i*INTRINSIC_SIZE + 0)] = px;
intrinsics[(i*INTRINSIC_SIZE + 1)] = py;
intrinsics[(i*INTRINSIC_SIZE + 2)] = fx;
intrinsics[(i*INTRINSIC_SIZE + 3)] = fy;
}
// store used camera pointers
std::map<double*,bool> used_cams;
std::map<double*,bool> used_intrinsics;
// add residual blocks
ceres::LossFunction* loss_function_lines = new ceres::HuberLoss(LOSS_THRESHOLD);
ceres::ScaledLoss* scaled_loss_lines = new ceres::ScaledLoss(loss_function_lines,1.0,ceres::TAKE_OWNERSHIP);
for(size_t i=0; i<clusters3D_->size(); ++i)
{
// iterate over 2D residuals
std::list<L3DPP::Segment2D>::const_iterator it=clusters3D_->at(i).residuals()->begin();
for(; it!=clusters3D_->at(i).residuals()->end(); ++it)
{
L3DPP::Segment2D seg2D = *it;
size_t camera_idx = cam_global2local[seg2D.camID()];
L3DPP::View* v = views_[seg2D.camID()];
ceres::CostFunction* cost_function;
// 2D line points and direction
Eigen::Vector4f coords = v->getLineSegment2D(seg2D.segID());
Eigen::Vector2d p1(coords.x(),coords.y());
Eigen::Vector2d p2(coords.z(),coords.w());
Eigen::Vector2d dir = (p2-p1).normalized();
cost_function = // 2 residuals, 6 camera parameters (ext), 4 line parameters
new ceres::AutoDiffCostFunction<LineReprojectionError, 2, CAM_PARAMETERS_SIZE, LINE_SIZE, INTRINSIC_SIZE>(
new LineReprojectionError(p1.x(),p1.y(),p2.x(),p2.y(),-dir.y(),dir.x())); // direction as normal vector!
problem->AddResidualBlock(cost_function,scaled_loss_lines,
cameras + camera_idx*CAM_PARAMETERS_SIZE,
lines + i*LINE_SIZE, intrinsics + camera_idx*INTRINSIC_SIZE);
used_cams[cameras + camera_idx*CAM_PARAMETERS_SIZE] = true;
used_intrinsics[intrinsics + camera_idx*INTRINSIC_SIZE] = true;
}
}
// set cameras and intrinsics as constant
std::map<double*,bool>::const_iterator uc_it = used_cams.begin();
for(; uc_it!=used_cams.end(); ++uc_it)
{
problem->SetParameterBlockConstant(uc_it->first);
}
uc_it = used_intrinsics.begin();
for(; uc_it!=used_intrinsics.end(); ++uc_it)
{
problem->SetParameterBlockConstant(uc_it->first);
}
// set badly conditioned lines as constant
unsigned int num_const = 0;
for(size_t i=0; i<keep_const.size(); ++i)
{
if(keep_const[i])
{
problem->SetParameterBlockConstant(lines +i*LINE_SIZE);
++num_const;
}
}
std::cout << prefix_ << "#unoptimizable_lines = " << num_const << std::endl;
// solve
ceres::Solver::Options options;
options.max_num_iterations = max_iter_;
options.linear_solver_type = ceres::SPARSE_SCHUR;
options.num_threads = boost::thread::hardware_concurrency();
options.minimizer_progress_to_stdout = true;
options.num_linear_solver_threads = boost::thread::hardware_concurrency();
ceres::Solver::Summary summary;
ceres::Solve(options,problem,&summary);
std::cout << summary.FullReport();
// write back
std::vector<L3DPP::LineCluster3D> clusters_copy = *clusters3D_;
clusters3D_->clear();
for(size_t i=0; i<clusters_copy.size(); ++i)
{
L3DPP::LineCluster3D LC = clusters_copy[i];
// get final Cayley coords
double omega = lines[i* LINE_SIZE + 0];
Eigen::Vector3d s(lines[i * LINE_SIZE + 1],
lines[i * LINE_SIZE + 2],
lines[i * LINE_SIZE + 3]);
// get old coords
Eigen::Vector3d P1_old(tmp_pts[i * 6 + 0],
tmp_pts[i * 6 + 1],
tmp_pts[i * 6 + 2]);
Eigen::Vector3d P2_old(tmp_pts[i * 6 + 3],
tmp_pts[i * 6 + 4],
tmp_pts[i * 6 + 5]);
Eigen::Vector3d P1,P2;
if(omega < 0.0 || fabs(omega) < L3D_EPS)
{
// keep original coords
P1 = P1_old;
P2 = P2_old;
}
else
{
// update coords
Eigen::Matrix3d sx = Eigen::Matrix3d::Constant(0.0);
sx(0,1) = -s.z(); sx(0,2) = s.y();
sx(1,0) = s.z(); sx(1,2) = -s.x();
sx(2,0) = -s.y(); sx(2,1) = s.x();
double nm = s.x()*s.x()+s.y()*s.y()+s.z()*s.z();
Eigen::Matrix3d Q = 1.0/(1.0+nm) * ((1.0-nm)*Eigen::Matrix3d::Identity() + 2.0*sx + 2.0*s*s.transpose());
Eigen::Vector3d l(Q(0,0),Q(1,0),Q(2,0));
Eigen::Vector3d m(Q(0,1),Q(1,1),Q(2,1));
m *= omega;
// convert back to P1,P2
if(fabs(l.x()) > L3D_EPS || fabs(l.y()) > L3D_EPS || fabs(l.z()) > L3D_EPS)
{
Eigen::Vector3d Pm = 0.5*(P1_old+P2_old);
double x1,x2,x3;
if(fabs(l.x()) > fabs(l.y()) && fabs(l.x()) > fabs(l.z()))
{
x1 = Pm.x();
x3 = (-m.y()-x1*l.z())/-l.x();
x2 = (m.z()-x1*l.y())/-l.x();
}
else if(fabs(l.y()) > fabs(l.x()) && fabs(l.y()) > fabs(l.z()))
{
x2 = Pm.y();
x3 = (m.x()-x2*l.z())/-l.y();
x1 = (m.z()+x2*l.x())/l.y();
}
else
{
x3 = Pm.z();
x2 = (m.x()+x3*l.y())/l.z();
x1 = (-m.y()+x3*l.x())/l.z();
}
Pm = Eigen::Vector3d(x1,x2,x3);
P1 = Pm+l;
P2 = Pm-l;
}
else
{
// numerically unstable... keep unoptimized
P1 = P1_old;
P2 = P2_old;
}
}
// check length
if((P1-P2).norm() > L3D_EPS)
{
// still valid
LC.update3Dline(L3DPP::Segment3D(P1,P2));
clusters3D_->push_back(LC);
}
}
// cleanup
delete lines;
delete tmp_pts;
delete cameras;
delete intrinsics;
delete problem;
}
}
#endif //L3DPP_CERES