forked from manhofer/Line3Dpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_openmvg.cpp
443 lines (363 loc) · 15.9 KB
/
main_openmvg.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/*
Line3D++ - Line-based Multi View Stereo
Copyright (C) 2015 Manuel Hofer
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// check libs
#include "configLIBS.h"
// EXTERNAL
#include <tclap/CmdLine.h>
#include <tclap/CmdLineInterface.h>
#include <boost/filesystem.hpp>
#include "eigen3/Eigen/Eigen"
#include "rapidjson/document.h"
#include "rapidjson/writer.h"
#include "rapidjson/stringbuffer.h"
// std
#include <iostream>
#include <fstream>
// opencv
#ifdef L3DPP_OPENCV3
#include <opencv2/highgui.hpp>
#else
#include <opencv/highgui.h>
#endif //L3DPP_OPENCV3
// lib
#include "line3D.h"
// INFO:
// This executable reads OpenMVG results (sfm_data.json) and executes the Line3D++ algorithm.
// If distortion coefficients are stored in the sfm_data file, you need to use the _original_
// (distorted) images!
int main(int argc, char *argv[])
{
TCLAP::CmdLine cmd("LINE3D++");
TCLAP::ValueArg<std::string> inputArg("i", "input_folder", "folder containing the original images", true, ".", "string");
cmd.add(inputArg);
TCLAP::ValueArg<std::string> jsonArg("j", "sfm_json_file", "full path to the OpenMVG result file (sfm_data.json)", true, ".", "string");
cmd.add(jsonArg);
TCLAP::ValueArg<std::string> outputArg("o", "output_folder", "folder where result and temporary files are stored (if not specified --> input_folder+'/Line3D++/')", false, "", "string");
cmd.add(outputArg);
TCLAP::ValueArg<int> scaleArg("w", "max_image_width", "scale image down to fixed max width for line segment detection", false, L3D_DEF_MAX_IMG_WIDTH, "int");
cmd.add(scaleArg);
TCLAP::ValueArg<int> neighborArg("n", "num_matching_neighbors", "number of neighbors for matching (-1 --> use all)", false, L3D_DEF_MATCHING_NEIGHBORS, "int");
cmd.add(neighborArg);
TCLAP::ValueArg<float> sigma_A_Arg("a", "sigma_a", "angle regularizer", false, L3D_DEF_SCORING_ANG_REGULARIZER, "float");
cmd.add(sigma_A_Arg);
TCLAP::ValueArg<float> sigma_P_Arg("p", "sigma_p", "position regularizer (if negative: fixed sigma_p in world-coordinates)", false, L3D_DEF_SCORING_POS_REGULARIZER, "float");
cmd.add(sigma_P_Arg);
TCLAP::ValueArg<float> epipolarArg("e", "min_epipolar_overlap", "minimum epipolar overlap for matching", false, L3D_DEF_EPIPOLAR_OVERLAP, "float");
cmd.add(epipolarArg);
TCLAP::ValueArg<int> knnArg("k", "knn_matches", "number of matches to be kept (<= 0 --> use all that fulfill overlap)", false, L3D_DEF_KNN, "int");
cmd.add(knnArg);
TCLAP::ValueArg<int> segNumArg("y", "num_segments_per_image", "maximum number of 2D segments per image (longest)", false, L3D_DEF_MAX_NUM_SEGMENTS, "int");
cmd.add(segNumArg);
TCLAP::ValueArg<int> visibilityArg("v", "visibility_t", "minimum number of cameras to see a valid 3D line", false, L3D_DEF_MIN_VISIBILITY_T, "int");
cmd.add(visibilityArg);
TCLAP::ValueArg<bool> diffusionArg("d", "diffusion", "perform Replicator Dynamics Diffusion before clustering", false, L3D_DEF_PERFORM_RDD, "bool");
cmd.add(diffusionArg);
TCLAP::ValueArg<bool> loadArg("l", "load_and_store_flag", "load/store segments (recommended for big images)", false, L3D_DEF_LOAD_AND_STORE_SEGMENTS, "bool");
cmd.add(loadArg);
TCLAP::ValueArg<float> collinArg("r", "collinearity_t", "threshold for collinearity", false, L3D_DEF_COLLINEARITY_T, "float");
cmd.add(collinArg);
TCLAP::ValueArg<bool> cudaArg("g", "use_cuda", "use the GPU (CUDA)", false, true, "bool");
cmd.add(cudaArg);
TCLAP::ValueArg<bool> ceresArg("c", "use_ceres", "use CERES (for 3D line optimization)", false, L3D_DEF_USE_CERES, "bool");
cmd.add(ceresArg);
TCLAP::ValueArg<float> constRegDepthArg("z", "const_reg_depth", "use a constant regularization depth (only when sigma_p is metric!)", false, -1.0f, "float");
cmd.add(constRegDepthArg);
// read arguments
cmd.parse(argc,argv);
std::string inputFolder = inputArg.getValue().c_str();
std::string jsonFile = jsonArg.getValue().c_str();
std::string outputFolder = outputArg.getValue().c_str();
if(outputFolder.length() == 0)
outputFolder = inputFolder+"/Line3D++/";
int maxWidth = scaleArg.getValue();
unsigned int neighbors = std::max(neighborArg.getValue(),2);
bool diffusion = diffusionArg.getValue();
bool loadAndStore = loadArg.getValue();
float collinearity = collinArg.getValue();
bool useGPU = cudaArg.getValue();
bool useCERES = ceresArg.getValue();
float epipolarOverlap = fmin(fabs(epipolarArg.getValue()),0.99f);
float sigmaA = fabs(sigma_A_Arg.getValue());
float sigmaP = sigma_P_Arg.getValue();
int kNN = knnArg.getValue();
unsigned int maxNumSegments = segNumArg.getValue();
unsigned int visibility_t = visibilityArg.getValue();
float constRegDepth = constRegDepthArg.getValue();
// check if json file exists
boost::filesystem::path json(jsonFile);
if(!boost::filesystem::exists(json))
{
std::cerr << "OpenMVG json file " << jsonFile << " does not exist!" << std::endl;
return -1;
}
// create output directory
boost::filesystem::path dir(outputFolder);
boost::filesystem::create_directory(dir);
// create Line3D++ object
L3DPP::Line3D* Line3D = new L3DPP::Line3D(outputFolder,loadAndStore,maxWidth,
maxNumSegments,true,useGPU);
// parse json file
std::ifstream jsonFileIFS(jsonFile.c_str());
std::string str((std::istreambuf_iterator<char>(jsonFileIFS)),
std::istreambuf_iterator<char>());
rapidjson::Document d;
d.Parse(str.c_str());
rapidjson::Value& s = d["views"];
size_t num_cams = s.Size();
if(num_cams == 0)
{
std::cerr << "No aligned cameras in json file!" << std::endl;
return -1;
}
// read image IDs and filename (sequentially)
std::vector<std::string> cams_imgFilenames(num_cams);
std::vector<unsigned int> cams_intrinsic_IDs(num_cams);
std::vector<unsigned int> cams_view_IDs(num_cams);
std::vector<unsigned int> cams_pose_IDs(num_cams);
std::vector<bool> img_found(num_cams);
std::map<unsigned int,unsigned int> pose2view;
for(rapidjson::SizeType i=0; i<s.Size(); ++i)
{
rapidjson::Value& array_element = s[i];
rapidjson::Value& view_data = array_element["value"]["ptr_wrapper"]["data"];
std::string filename = view_data["filename"].GetString();
unsigned int view_id = view_data["id_view"].GetUint();
unsigned int intrinsic_id = view_data["id_intrinsic"].GetUint();
unsigned int pose_id = view_data["id_pose"].GetUint();
std::string full_path = inputFolder+"/"+filename;
boost::filesystem::path full_path_check(full_path);
if(boost::filesystem::exists(full_path_check))
{
// image exists
cams_imgFilenames[i] = full_path;
cams_view_IDs[i] = view_id;
cams_intrinsic_IDs[i] = intrinsic_id;
cams_pose_IDs[i] = pose_id;
img_found[i] = true;
pose2view[pose_id] = view_id;
}
else
{
// image not found...
img_found[i] = false;
std::cerr << "WARNING: image '" << filename << "' not found (ID=" << view_id << ")" << std::endl;
}
}
// read intrinsics (sequentially)
std::map<unsigned int,Eigen::Vector3d> radial_dist;
std::map<unsigned int,Eigen::Vector2d> tangential_dist;
std::map<unsigned int,Eigen::Matrix3d> K_matrices;
std::map<unsigned int,bool> is_distorted;
rapidjson::Value& intr = d["intrinsics"];
size_t num_intrinsics = intr.Size();
if(num_intrinsics == 0)
{
std::cerr << "No intrinsics in json file!" << std::endl;
return -1;
}
std::string cam_model;
for(rapidjson::SizeType i=0; i<intr.Size(); ++i)
{
rapidjson::Value& array_element = intr[i];
rapidjson::Value& intr_data = array_element["value"]["ptr_wrapper"]["data"];
if (array_element["value"].HasMember("polymorphic_name"))
cam_model = array_element["value"]["polymorphic_name"].GetString();
unsigned int groupID = array_element["key"].GetUint();
bool distorted = false;
Eigen::Vector3d radial_d(0,0,0);
Eigen::Vector2d tangential_d(0,0);
double focal_length = intr_data["focal_length"].GetDouble();;
Eigen::Vector2d principle_p;
principle_p(0) = intr_data["principal_point"][0].GetDouble();
principle_p(1) = intr_data["principal_point"][1].GetDouble();
// check camera model for distortion
if(cam_model.compare("pinhole_radial_k3") == 0)
{
// 3 radial
radial_d(0) = intr_data["disto_k3"][0].GetDouble();
radial_d(1) = intr_data["disto_k3"][1].GetDouble();
radial_d(2) = intr_data["disto_k3"][2].GetDouble();
}
else if(cam_model.compare("pinhole_radial_k1") == 0)
{
// 1 radial
radial_d(0) = intr_data["disto_k1"][0].GetDouble();
}
else if(cam_model.compare("pinhole_brown_t2") == 0)
{
// 3 radial
radial_d(0) = intr_data["disto_t2"][0].GetDouble();
radial_d(1) = intr_data["disto_t2"][1].GetDouble();
radial_d(2) = intr_data["disto_t2"][2].GetDouble();
// 2 tangential
tangential_d(0) = intr_data["disto_t2"][3].GetDouble();
tangential_d(1) = intr_data["disto_t2"][4].GetDouble();
}
else if(cam_model.compare("pinhole") != 0)
{
std::cerr << "WARNING: camera model '" << cam_model << "' for group " << groupID << " unknown! No distortion assumed..." << std::endl;
}
// check if distortion actually occured
if(fabs(radial_d(0)) > L3D_EPS || fabs(radial_d(1)) > L3D_EPS || fabs(radial_d(2)) > L3D_EPS ||
fabs(tangential_d(0)) > L3D_EPS || fabs(tangential_d(1)) > L3D_EPS)
{
distorted = true;
}
// create K
Eigen::Matrix3d K = Eigen::Matrix3d::Zero();
K(0,0) = focal_length;
K(1,1) = focal_length;
K(0,2) = principle_p(0);
K(1,2) = principle_p(1);
K(2,2) = 1.0;
// store
radial_dist[groupID] = radial_d;
tangential_dist[groupID] = tangential_d;
K_matrices[groupID] = K;
is_distorted[groupID] = distorted;
}
// read extrinsics (sequentially)
std::map<unsigned int,Eigen::Vector3d> translations;
std::map<unsigned int,Eigen::Vector3d> centers;
std::map<unsigned int,Eigen::Matrix3d> rotations;
rapidjson::Value& extr = d["extrinsics"];
size_t num_extrinsics = extr.Size();
if(num_extrinsics == 0)
{
std::cerr << "No extrinsics in json file!" << std::endl;
return -1;
}
for(rapidjson::SizeType i=0; i<extr.Size(); ++i)
{
rapidjson::Value& array_element = extr[i];
unsigned int poseID = array_element["key"].GetUint();
if(pose2view.find(poseID) != pose2view.end())
{
unsigned int viewID = pose2view[poseID];
// rotation
rapidjson::Value& _R = array_element["value"]["rotation"];
Eigen::Matrix3d R = Eigen::Matrix3d::Zero();
R(0,0) = _R[0][0].GetDouble(); R(0,1) = _R[0][1].GetDouble(); R(0,2) = _R[0][2].GetDouble();
R(1,0) = _R[1][0].GetDouble(); R(1,1) = _R[1][1].GetDouble(); R(1,2) = _R[1][2].GetDouble();
R(2,0) = _R[2][0].GetDouble(); R(2,1) = _R[2][1].GetDouble(); R(2,2) = _R[2][2].GetDouble();
// center
rapidjson::Value& _C = array_element["value"]["center"];
Eigen::Vector3d C;
C(0) = _C[0].GetDouble(); C(1) = _C[1].GetDouble(); C(2) = _C[2].GetDouble();
// translation
Eigen::Vector3d t = -R*C;
// store
translations[viewID] = t;
centers[viewID] = C;
rotations[viewID] = R;
}
else
{
std::cerr << "WARNING: pose with ID " << poseID << " does not map to an image!" << std::endl;
}
}
// read worldpoint data (sequentially)
std::map<unsigned int,std::list<unsigned int> > views2wps;
std::map<unsigned int,std::vector<float> > views2depths;
rapidjson::Value& wps = d["structure"];
size_t num_wps = wps.Size();
if(num_wps == 0)
{
std::cerr << "No worldpoints in json file!" << std::endl;
return -1;
}
for(rapidjson::SizeType i=0; i<wps.Size(); ++i)
{
rapidjson::Value& array_element = wps[i];
rapidjson::Value& wp_data = array_element["value"];
// id and position
unsigned int wpID = array_element["key"].GetUint();
Eigen::Vector3d X;
X(0) = wp_data["X"][0].GetDouble();
X(1) = wp_data["X"][1].GetDouble();
X(2) = wp_data["X"][2].GetDouble();
// observations
size_t num_obs = wp_data["observations"].Size();
for(size_t j=0; j<num_obs; ++j)
{
unsigned int viewID = wp_data["observations"][j]["key"].GetUint();
if(centers.find(viewID) != centers.end())
{
float depth = (centers[viewID]-X).norm();
// store in list
views2wps[viewID].push_back(wpID);
views2depths[viewID].push_back(depth);
}
}
}
// load images (parallel)
#ifdef L3DPP_OPENMP
#pragma omp parallel for
#endif //L3DPP_OPENMP
for(unsigned int i=0; i<num_cams; ++i)
{
unsigned int camID = cams_view_IDs[i];
unsigned int intID = cams_intrinsic_IDs[i];
if(views2wps.find(camID) != views2wps.end() && img_found[i] &&
K_matrices.find(intID) != K_matrices.end())
{
// load image
cv::Mat image = cv::imread(cams_imgFilenames[i],CV_LOAD_IMAGE_GRAYSCALE);
// intrinsics
Eigen::Matrix3d K = K_matrices[intID];
// undistort (if necessary)
bool distorted = is_distorted[intID];
Eigen::Vector3d radial = radial_dist[intID];
Eigen::Vector2d tangential = tangential_dist[intID];
cv::Mat img_undist;
if(distorted)
{
// undistorting
Line3D->undistortImage(image,img_undist,radial,tangential,K);
}
else
{
// already undistorted
img_undist = image;
}
// median point depth
std::sort(views2depths[camID].begin(),views2depths[camID].end());
size_t med_pos = views2depths[camID].size()/2;
float med_depth = views2depths[camID].at(med_pos);
// add to system
Line3D->addImage(camID,img_undist,K,rotations[camID],
translations[camID],
med_depth,views2wps[camID]);
}
}
// match images
Line3D->matchImages(sigmaP,sigmaA,neighbors,epipolarOverlap,
kNN,constRegDepth);
// compute result
Line3D->reconstruct3Dlines(visibility_t,diffusion,collinearity,useCERES);
// save end result
std::vector<L3DPP::FinalLine3D> result;
Line3D->get3Dlines(result);
// save as STL
Line3D->saveResultAsSTL(outputFolder);
// save as OBJ
Line3D->saveResultAsOBJ(outputFolder);
// save as TXT
Line3D->save3DLinesAsTXT(outputFolder);
// save as BIN
Line3D->save3DLinesAsBIN(outputFolder);
// cleanup
delete Line3D;
}