-
Notifications
You must be signed in to change notification settings - Fork 115
/
README
115 lines (78 loc) · 3 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
=====================================================
``pyDOE``: The experimental design package for python
=====================================================
The ``pyDOE`` package is designed to help the
**scientist, engineer, statistician,** etc., to construct appropriate
**experimental designs**.
Capabilities
============
The package currently includes functions for creating designs for any
number of factors:
- *Factorial Designs*
#. **General Full-Factorial** (``fullfact``)
#. **2-level Full-Factorial** (``ff2n``)
#. **2-level Fractional Factorial** (``fracfact``)
#. **Plackett-Burman** (``pbdesign``)
- *Response-Surface Designs*
#. **Box-Behnken** (``bbdesign``)
#. **Central-Composite** (``ccdesign``)
- *Randomized Designs*
#. **Latin-Hypercube** (``lhs``)
*See the* `package homepage`_ *for details on usage and other notes*
What's New
==========
In this release, an incorrect indexing variable in the internal LHS function
``_pdist`` has been corrected so point-distances are now calculated accurately.
Requirements
============
- NumPy
- SciPy
Installation and download
=========================
See the `package homepage`_ for helpful hints relating to downloading
and installing pyDOE.
Source Code
===========
The latest, bleeding-edge but working `code
<https://github.com/tisimst/pyDOE/tree/master/pyDOE>`_
and `documentation source
<https://github.com/tisimst/pyDOE/tree/master/doc/>`_ are
available `on GitHub <https://github.com/tisimst/pyDOE/>`_.
Contact
=======
Any feedback, questions, bug reports, or success stores should
be sent to the `author`_. I'd love to hear from you!
Credits
=======
This code was originally published by the following individuals for use with
Scilab:
- Copyright (C) 2012 - 2013 - Michael Baudin
- Copyright (C) 2012 - Maria Christopoulou
- Copyright (C) 2010 - 2011 - INRIA - Michael Baudin
- Copyright (C) 2009 - Yann Collette
- Copyright (C) 2009 - CEA - Jean-Marc Martinez
- Website: forge.scilab.org/index.php/p/scidoe/sourcetree/master/macros
Much thanks goes to these individuals.
And thanks goes out to the following for finding and offering solutions for
bugs:
- Ashmeet Singh
License
=======
This package is provided under two licenses:
1. The *BSD License* (3-clause)
2. Any other that the author approves (just ask!)
References
==========
- `Factorial designs`_
- `Plackett-Burman designs`_
- `Box-Behnken designs`_
- `Central composite designs`_
- `Latin-Hypercube designs`_
.. _author: mailto:[email protected]
.. _Factorial designs: http://en.wikipedia.org/wiki/Factorial_experiment
.. _Box-Behnken designs: http://en.wikipedia.org/wiki/Box-Behnken_design
.. _Central composite designs: http://en.wikipedia.org/wiki/Central_composite_design
.. _Plackett-Burman designs: http://en.wikipedia.org/wiki/Plackett-Burman_design
.. _Latin-Hypercube designs: http://en.wikipedia.org/wiki/Latin_hypercube_sampling
.. _package homepage: http://pythonhosted.org/pyDOE
.. _lhs documentation: http://pythonhosted.org/pyDOE/randomized.html#latin-hypercube