forked from facebookresearch/fairseq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess_RACE.py
99 lines (85 loc) · 3.32 KB
/
preprocess_RACE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import json
import os
import re
class InputExample:
def __init__(self, paragraph, qa_list, label):
self.paragraph = paragraph
self.qa_list = qa_list
self.label = label
def get_examples(data_dir, set_type):
"""
Extract paragraph and question-answer list from each json file
"""
examples = []
levels = ["middle", "high"]
set_type_c = set_type.split('-')
if len(set_type_c) == 2:
levels = [set_type_c[1]]
set_type = set_type_c[0]
for level in levels:
cur_dir = os.path.join(data_dir, set_type, level)
for filename in os.listdir(cur_dir):
cur_path = os.path.join(cur_dir, filename)
with open(cur_path, 'r') as f:
cur_data = json.load(f)
answers = cur_data["answers"]
options = cur_data["options"]
questions = cur_data["questions"]
context = cur_data["article"].replace("\n", " ")
context = re.sub(r'\s+', ' ', context)
for i in range(len(answers)):
label = ord(answers[i]) - ord("A")
qa_list = []
question = questions[i]
for j in range(4):
option = options[i][j]
if "_" in question:
qa_cat = question.replace("_", option)
else:
qa_cat = " ".join([question, option])
qa_cat = re.sub(r'\s+', ' ', qa_cat)
qa_list.append(qa_cat)
examples.append(InputExample(context, qa_list, label))
return examples
def main():
"""
Helper script to extract paragraphs questions and answers from RACE datasets.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--input-dir",
help='input directory for downloaded RACE dataset',
)
parser.add_argument(
"--output-dir",
help='output directory for extracted data',
)
args = parser.parse_args()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
for set_type in ["train", "dev", "test-middle", "test-high"]:
examples = get_examples(args.input_dir, set_type)
qa_file_paths = [os.path.join(args.output_dir, set_type + ".input" + str(i + 1)) for i in range(4)]
qa_files = [open(qa_file_path, 'w') for qa_file_path in qa_file_paths]
outf_context_path = os.path.join(args.output_dir, set_type + ".input0")
outf_label_path = os.path.join(args.output_dir, set_type + ".label")
outf_context = open(outf_context_path, 'w')
outf_label = open(outf_label_path, 'w')
for example in examples:
outf_context.write(example.paragraph + '\n')
for i in range(4):
qa_files[i].write(example.qa_list[i] + '\n')
outf_label.write(str(example.label) + '\n')
for f in qa_files:
f.close()
outf_label.close()
outf_context.close()
if __name__ == '__main__':
main()