[https://arxiv.org/abs/2001.08210]
MBART is a sequence-to-sequence denoising auto-encoder pre-trained on large-scale monolingual corpora in many languages using the BART objective. mBART is one of the first methods for pre-training a complete sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have focused only on the encoder, decoder, or reconstructing parts of the text.
Model | Description | # params | Download |
---|---|---|---|
mbart.CC25 |
mBART model with 12 encoder and decoder layers trained on 25 languages' monolingual corpus | 610M | mbart.CC25.tar.gz |
mbart.ft.ro_en |
finetune mBART cc25 model on ro-en language pairs | 610M | mbart.cc25.ft.enro.tar.gz |
(test set, no additional data used)
Model | en-ro | ro-en |
---|---|---|
Random |
34.3 | 34.0 |
mbart.cc25 |
37.7 | 37.8 |
mbart.enro.bilingual |
38.5 | 38.5 |
wget https://dl.fbaipublicfiles.com/fairseq/models/mbart/mbart.CC25.tar.gz
tar -xzvf mbart.CC25.tar.gz
install SPM here
SPM=/path/to/sentencepiece/build/src/spm_encode
MODEL=sentence.bpe.model
${SPM} --model=${MODEL} < ${DATA}/${TRAIN}.${SRC} > ${DATA}/${TRAIN}.spm.${SRC} &
${SPM} --model=${MODEL} < ${DATA}/${TRAIN}.${TGT} > ${DATA}/${TRAIN}.spm.${TGT} &
${SPM} --model=${MODEL} < ${DATA}/${VALID}.${SRC} > ${DATA}/${VALID}.spm.${SRC} &
${SPM} --model=${MODEL} < ${DATA}/${VALID}.${TGT} > ${DATA}/${VALID}.spm.${TGT} &
${SPM} --model=${MODEL} < ${DATA}/${TEST}.${SRC} > ${DATA}/${TEST}.spm.${SRC} &
${SPM} --model=${MODEL} < ${DATA}/${TEST}.${TGT} > ${DATA}/${TEST}.spm.${TGT} &
DICT=dict.txt
fairseq-preprocess \
--source-lang ${SRC} \
--target-lang ${TGT} \
--trainpref ${DATA}/${TRAIN}.spm \
--validpref ${DATA}/${VALID}.spm \
--testpref ${DATA}/${TEST}.spm \
--destdir ${DEST}/${NAME} \
--thresholdtgt 0 \
--thresholdsrc 0 \
--srcdict ${DICT} \
--tgtdict ${DICT} \
--workers 70
Finetune on mbart CC25
PRETRAIN=/path/to/model/mbart.cc25
langs=ar_AR,cs_CZ,de_DE,en_XX,es_XX,et_EE,fi_FI,fr_XX,gu_IN,hi_IN,it_IT,ja_XX,kk_KZ,ko_KR,lt_LT,lv_LV,my_MM,ne_NP,nl_XX,ro_RO,ru_RU,si_LK,tr_TR,vi_VN,zh_CN
fairseq-train path_2_data \
--encoder-normalize-before --decoder-normalize-before \
--arch mbart_large --layernorm-embedding \
--task translation_from_pretrained_bart \
--source-lang en_XX --target-lang ro_RO \
--criterion label_smoothed_cross_entropy --label-smoothing 0.2 \
--dataset-impl mmap \
--optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \
--lr-scheduler polynomial_decay --lr 3e-05 --min-lr -1 --warmup-updates 2500 --total-num-update 40000 \
--dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \
--max-tokens 1024 --update-freq 2 \
--save-interval 1 --save-interval-updates 5000 --keep-interval-updates 10 --no-epoch-checkpoints \
--seed 222 --log-format simple --log-interval 2 \
--restore-file $PRETRAIN \
--reset-optimizer --reset-meters --reset-dataloader --reset-lr-scheduler \
--langs $langs \
--ddp-backend no_c10d
Get sacrebleu on finetuned en-ro model
get tokenizer here
wget https://dl.fbaipublicfiles.com/fairseq/models/mbart/mbart.cc25.ft.enro.tar.gz
tar -xzvf mbart.cc25.ft.enro.tar.gz
model=model.pt
fairseq-generate path_2_data \
--path $model \
--task translation_from_pretrained_bart \
--gen-subset test \
-t ro_RO -s en_XX \
--bpe 'sentencepiece' --sentencepiece-model sentence.bpe.model \
--sacrebleu --remove-bpe 'sentencepiece'\
--max-sentences 32 --langs $langs > en_ro
cat en_ro | grep -P "^H" |sort -V |cut -f 3- | sed 's/\[ro_RO\]//g' |$TOKENIZER ro > en_ro.hyp
cat en_ro | grep -P "^T" |sort -V |cut -f 2- | sed 's/\[ro_RO\]//g' |$TOKENIZER ro > en_ro.ref
sacrebleu -tok 'none' -s 'none' en_ro.ref < en_ro.hyp
@article{liu2020multilingual,
title={Multilingual Denoising Pre-training for Neural Machine Translation},
author={Yinhan Liu and Jiatao Gu and Naman Goyal and Xian Li and Sergey Edunov and Marjan Ghazvininejad and Mike Lewis and Luke Zettlemoyer},
year={2020},
eprint={2001.08210},
archivePrefix={arXiv},
primaryClass={cs.CL}
}