forked from gianlucadetommaso/volatile
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
271 lines (220 loc) · 10.9 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_probability as tfp
from tensorflow_probability import distributions as tfd
def s_model(info: dict) -> tfd.JointDistributionSequentialAutoBatched:
"""
Define and return graphical model.
Parameters
----------
info: dict
Data information.
"""
tt = info['tt']
order_scale = info['order_scale']
order = len(order_scale) - 1
m = [tfd.Normal(loc=tf.zeros([info['num_stocks'], order + 1]), scale=4 * order_scale), # phi
tfd.Normal(loc=tf.zeros([info['num_stocks'], 1]), scale=4)] # psi
m += [lambda psi, phi: tfd.Normal(loc=tf.tensordot(phi, tt, axes=1), scale=tf.math.softplus(psi))] # y
return tfd.JointDistributionSequentialAutoBatched(m)
def train_s(logp: np.array, info: dict, learning_rate: float = 0.01, num_steps: int = 10000, plot_loss: bool = False) -> tuple:
"""
It performs sequential optimization over the model parameters via Adam optimizer, training at different levels to
provide sensible initial solutions at finer levels.
Parameters
----------
logp: np.array
Log-price at stock-level.
info: dict
Data information.
learning_rate: float
Adam's fixed learning rate.
num_steps: int
Adam's fixed number of iterations.
plot_loss: bool
Plot loss decay.
Returns
-------
It returns a tuple of trained parameters.
"""
optimizer = tf.optimizers.Adam(learning_rate=learning_rate)
# stock
model = s_model(info)
phi, psi = (tf.Variable(tf.zeros_like(model.sample()[i])) for i in range(2))
loss = tfp.math.minimize(lambda: -model.log_prob([phi, psi, logp]), optimizer=optimizer, num_steps=num_steps)
if plot_loss:
fig_name = 'loss_decay.png'
fig = plt.figure(figsize=(10, 3))
plt.plot(loss)
plt.legend(["loss decay"], fontsize=12, loc="upper right")
plt.xlabel("iteration", fontsize=12)
fig.savefig(fig_name, dpi=fig.dpi)
print('Loss decay plot has been saved in this directory as {}.'.format(fig_name))
return phi, psi
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def msis_mcs_model(info: dict, level: str = "stock") -> tfd.JointDistributionSequentialAutoBatched:
"""
Define and return graphical model.
Parameters
----------
info: dict
Data information.
level: str
Level of the model; possible candidates are "stock", "industry", "sector" and "market".
"""
tt = info['tt']
order_scale = info['order_scale']
order = len(order_scale) - 1
num_sectors = info['num_sectors']
sec2ind_id = info['sector_industries_id']
ind_id = info['industries_id']
available_levels = ["market", "sector", "industry", "stock"]
if level not in available_levels:
raise Exception("Selected level is unknown. Please provide one of the following levels: {}.".format(available_levels))
m = [tfd.Normal(loc=tf.zeros([1, order + 1]), scale=4 * order_scale), # phi_m
tfd.Normal(loc=0, scale=4)] # psi_m
if level != "market":
m += [lambda psi_m, phi_m: tfd.Normal(loc=tf.repeat(phi_m, num_sectors, axis=0), scale=2 * order_scale), # phi_s
lambda phi_s, psi_m: tfd.Normal(loc=psi_m, scale=2 * tf.ones([num_sectors, 1]))] # psi_s
if level != "sector":
sec2ind_id = info['sector_industries_id']
m += [lambda psi_s, phi_s: tfd.Normal(loc=tf.gather(phi_s, sec2ind_id, axis=0), scale=order_scale), # phi_i
lambda phi_i, psi_s: tfd.Normal(loc=tf.gather(psi_s, sec2ind_id, axis=0), scale=1)] # psi_i
if level != "industry":
ind_id = info['industries_id']
m += [lambda psi_i, phi_i: tfd.Normal(loc=tf.gather(phi_i, ind_id, axis=0), scale=0.5 * order_scale), # phi
lambda phi, psi_i: tfd.Normal(loc=tf.gather(psi_i, ind_id, axis=0), scale=0.5)] # psi
if level == "market":
m += [lambda psi_m, phi_m: tfd.Normal(loc=tf.tensordot(phi_m, tt, axes=1), scale=tf.math.softplus(psi_m))] # y
if level == "sector":
m += [lambda psi_s, phi_s: tfd.Normal(loc=tf.tensordot(phi_s, tt, axes=1), scale=tf.math.softplus(psi_s))] # y
if level == "industry":
m += [lambda psi_i, phi_i: tfd.Normal(loc=tf.tensordot(phi_i, tt, axes=1), scale=tf.math.softplus(psi_i))] # y
if level == "stock":
if "clusters_id" not in info:
m += [lambda psi, phi: tfd.Normal(loc=tf.tensordot(phi, tt, axes=1), scale=tf.math.softplus(psi))] # y
else:
clusters_id = info['clusters_id']
num_clusters = np.max(clusters_id) + 1
m += [tfd.Normal(loc=tf.zeros([1, order + 1]), scale=4 * order_scale), # chi_m
tfd.Normal(loc=0, scale=4)] # xi_m
m += [lambda xi_m, chi_m: tfd.Normal(loc=tf.repeat(chi_m, num_clusters, axis=0), scale=2 * order_scale), # chi_c
lambda chi_c, xi_m: tfd.Normal(loc=xi_m, scale=2 * tf.ones([num_clusters, 1]))] # xi_c
m += [lambda xi_c, chi_c: tfd.Normal(loc=tf.gather(chi_c, clusters_id, axis=0), scale=order_scale), # chi
lambda chi, xi_c: tfd.Normal(loc=tf.gather(xi_c, clusters_id, axis=0), scale=1)] # xi
m += [lambda xi, chi, xi_c, chi_c, xi_m, chi_m, psi, phi:\
tfd.Normal(loc=tf.tensordot(phi + chi, tt, axes=1), scale=tf.math.softplus(psi + xi))] # y
return tfd.JointDistributionSequentialAutoBatched(m)
def train_msis_mcs(logp: np.array, info: dict, learning_rate: float = 0.01, num_steps: int = 10000, plot_losses: bool = False) -> tuple:
"""
It performs sequential optimization over the model parameters via Adam optimizer, training at different levels to
provide sensible initial solutions at finer levels.
Parameters
----------
logp: np.array
Log-price at stock-level.
info: dict
Data information.
learning_rate: float
Adam's fixed learning rate.
num_steps: int
Adam's fixed number of iterations.
plot_losses: bool
If True, a losses decay plot is saved in the current directory.
Returns
-------
It returns a tuple of trained parameters.
"""
optimizer = tf.optimizers.Adam(learning_rate=learning_rate)
num_steps_l = int(np.ceil(num_steps // 4))
# market
model = msis_mcs_model(info, "market")
phi_m, psi_m = (tf.Variable(tf.zeros_like(model.sample()[:2][i])) for i in range(2))
loss_m = tfp.math.minimize(lambda: -model.log_prob([phi_m, psi_m, logp.mean(0, keepdims=1)]),
optimizer=optimizer, num_steps=num_steps_l)
# sector
model = msis_mcs_model(info, "sector")
phi_m, psi_m = tf.constant(phi_m), tf.constant(psi_m)
phi_s, psi_s = (tf.Variable(tf.zeros_like(model.sample()[2:4][i])) for i in range(2))
logp_s = np.array([logp[np.where(np.array(info['sectors_id']) == k)[0]].mean(0) for k in range(info['num_sectors'])])
loss_s = tfp.math.minimize(lambda: -model.log_prob([phi_m, psi_m, phi_s, psi_s, logp_s]),
optimizer=optimizer, num_steps=num_steps_l)
# industry
model = msis_mcs_model(info, "industry")
phi_s, psi_s = tf.constant(phi_s), tf.constant(psi_s)
phi_i, psi_i = (tf.Variable(tf.zeros_like(model.sample()[4:6][i])) for i in range(2))
logp_i = np.array([logp[np.where(np.array(info['industries_id']) == k)[0]].mean(0) for k in range(info['num_industries'])])
loss_i = tfp.math.minimize(lambda: -model.log_prob([phi_m, psi_m, phi_s, psi_s, phi_i, psi_i, logp_i]),
optimizer=optimizer, num_steps=num_steps_l)
# stock
model = msis_mcs_model(info, "stock")
phi_i, psi_i = tf.constant(phi_i), tf.constant(psi_i)
if 'clusters_id' in info:
phi, psi, chi_m, xi_m, chi_c, xi_c, chi, xi = (tf.Variable(tf.zeros_like(model.sample()[6:14][i])) for i in range(8))
loss = tfp.math.minimize(
lambda: -model.log_prob([phi_m, psi_m, phi_s, psi_s, phi_i, psi_i, phi, psi, chi_m, xi_m, chi_c, xi_c, chi, xi, logp]),
optimizer=optimizer, num_steps=num_steps_l)
else:
phi, psi = (tf.Variable(tf.zeros_like(model.sample()[6:8][i])) for i in range(2))
loss = tfp.math.minimize(lambda: -model.log_prob([phi_m, psi_m, phi_s, psi_s, phi_i, psi_i, phi, psi, logp]),
optimizer=optimizer, num_steps=num_steps_l)
if plot_losses:
fig_name = 'losses_decay.png'
fig = plt.figure(figsize=(20, 3))
plt.subplot(141)
plt.title("market-level", fontsize=12)
plt.plot(loss_m)
plt.subplot(142)
plt.title("sector-level", fontsize=12)
plt.plot(loss_s)
plt.subplot(143)
plt.title("industry-level", fontsize=12)
plt.plot(loss_i)
plt.subplot(144)
plt.title("stock-level", fontsize=12)
plt.plot(loss)
plt.legend(["loss decay"], fontsize=12, loc="upper right")
plt.xlabel("iteration", fontsize=12)
fig.savefig(fig_name, dpi=fig.dpi)
print('Losses decay plot has been saved in this directory as {}.'.format(fig_name))
params = (phi_m, psi_m, phi_s, psi_s, phi_i, psi_i, phi, psi)
if 'clusters_id' in info:
params += (chi_m, xi_m, chi_c, xi_c, chi, xi)
return params
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def conj_lin_model(logp: np.array):
"""
A Gaussian-Gaussian conjugate model that sequentially predicts the next log-price.
Parameters
----------
logp: np.array
Log-prices at stock-level.
Returns
-------
pred_all: np.array
Prediction for each stock of the last T-2 prices and of the next price, where T is the number of dates.
"""
num_stocks, T = logp.shape
mu0 = np.zeros((num_stocks, 2, 1))
cov0_inv = np.eye(2)[None].repeat(num_stocks, 0)
gamma2 = np.ones((num_stocks, 1))
ones = np.ones((num_stocks, 1))
pred_all = np.zeros((num_stocks, T - 1))
for t in range(T-1):
y = logp[:, t, None]
ytilde = np.hstack((ones, y))
cov_inv = cov0_inv + ytilde[:, :, None] * ytilde[:, None] / gamma2[:, None]
det = cov_inv[:, 0, 0] * cov_inv[:, 1, 1] - cov_inv[:, 0, 1] ** 2
cov = np.zeros((num_stocks, 2, 2))
cov[:, 0, 0] = cov_inv[:, 1, 1] / det
cov[:, 1, 1] = cov_inv[:, 0, 0] / det
cov[:, 0, 1] = -cov_inv[:, 0, 1] / det
cov[:, 1, 0] = -cov_inv[:, 1, 0] / det
mu = np.sum(cov0_inv * mu0, 1) + ytilde * logp[:, t + 1, None] / gamma2
mu = np.sum(cov * mu[:, None, :], 2, keepdims=True)
mu0 = mu
cov0_inv = cov_inv
gamma2 = np.var(logp[:, :t + 2], 1, keepdims=True) + 1e-6
pred_all[:, t] = np.sum(mu.squeeze() * np.hstack((ones, logp[:, t + 1, None])), 1)
return pred_all