-
Notifications
You must be signed in to change notification settings - Fork 0
/
e-optimal_ais_computable.tex
65 lines (58 loc) · 2.6 KB
/
e-optimal_ais_computable.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
\documentclass[12pt]{article}
\usepackage{geometry}
\geometry{a4paper}
\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{epstopdf}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{mathtools}
\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png}
\usepackage{color}
\usepackage[usenames,dvipsnames,svgnames,table]{xcolor}
\usepackage{pdfpages}
\usepackage{braket}
\usepackage{mathrsfs}\newcommand{\ketbra}[2]{\ensuremath{\left| #1 \right\rangle \left\langle #2 \right|}}
\renewcommand\vec[1]{\ensuremath{\mathbf{#1}}}
\newcommand\D[3]{\displaystyle\frac{d^{#1}#2}{d#3^{#1}}} %{d no.}{top}{bottom}
\renewcommand\P[3]{\frac{\partial^{#1}#2}{\partial#3^{#1}}} %as above, partial
\newcommand\E[1]{\ensuremath{\times 10^{#1}}}
\newcommand\R{\mathbb{R}}
\newcommand\C{\mathbb{C}}
\newcommand\Z{\mathbb{Z}}
\newcommand\N{\mathbb{N}}
\newcommand\Q{\mathbb{Q}}
\newcommand{\ts}{\textsuperscript}
\newcommand\clos{\text{closure}}
\newcommand\range{\text{range}}
\newcommand\supp{\text{supp}}
\DeclareMathOperator*{\argmax}{arg\,max}
\usepackage{tikz}
\usetikzlibrary{matrix,arrows,decorations.pathmorphing}
\usepackage{tikz-cd}
\usepackage{hyperref}
\title{$\epsilon$-optimal AIS is computable}
\author{Daniel Filan, \texttt{[email protected]}}
\date{}
\begin{document}
\maketitle
First, we define the AIS model by putting the speed prior into the AIXI model:
\begin{align*}
\dot{a}_k = \argmax_{a_k} \lim_{m \rightarrow \infty} \max_a \sum_e (\gamma_k r_k + \dotsb + \gamma_m r_m) S(ae_{k:m} | ae_{<k})
\end{align*}
where the $\gamma_t$ are discount factors such that
\begin{align*}
\sum_{t=1}^\infty \gamma_t < \infty
\end{align*}
Here, we show that AIS is computable to within $\epsilon$ accuracy: that is, that the value gained by this approximation may be up to $\epsilon$ less than the value that AIS expects to get.
To do this, note that since $S$ and rewards are bounded, there exists some $n > k$ such that
\begin{align*}
\lim_{m \rightarrow \infty} \max_a \sum_e (\gamma_n r_n + \dotsb + \gamma_m r_m) S(ae_{k:m} | ae_{<k}) &\leq C \sum_{t = n}^\infty \gamma_t \\
&\leq \epsilon
\end{align*}
Therefore, we can simply compute
\begin{align*}
\dot{a_k}= \argmax_{a_k} \max_a \sum_e (\gamma_k r_k + \dotsb + \gamma_n r_n) S(ae_{kn}:ae_{<k})
\end{align*}
and the value gained by $\dot{a_k}$ can be no less than $\epsilon$ less than the value gained by the optimal policy. Therefore, AIS is computable to within $\epsilon$ accuracy, assuming that $\sum_{t = n}^\infty \gamma_t$ is computable.
\end{document}