-
Notifications
You must be signed in to change notification settings - Fork 443
/
Copy pathmodels.py
462 lines (386 loc) · 21.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import torch.nn.functional as F
from utils.google_utils import *
from utils.parse_config import *
from utils.utils import *
ONNX_EXPORT = False
def create_modules(module_defs, img_size, arc):
# Constructs module list of layer blocks from module configuration in module_defs
hyperparams = module_defs.pop(0)
output_filters = [int(hyperparams['channels'])]
module_list = nn.ModuleList()
routs = [] # list of layers which rout to deeper layes
yolo_index = -1
for i, mdef in enumerate(module_defs):
modules = nn.Sequential()
if mdef['type'] == 'convolutional':
bn = int(mdef['batch_normalize'])
filters = int(mdef['filters'])
kernel_size = int(mdef['size'])
pad = (kernel_size - 1) // 2 if int(mdef['pad']) else 0
modules.add_module('Conv2d', nn.Conv2d(in_channels=output_filters[-1],
out_channels=filters,
kernel_size=kernel_size,
stride=int(mdef['stride']),
padding=pad,
bias=not bn))
if bn:
modules.add_module('BatchNorm2d', nn.BatchNorm2d(filters, momentum=0.1))
if mdef['activation'] == 'leaky': # TODO: activation study https://github.com/ultralytics/yolov3/issues/441
modules.add_module('activation', nn.LeakyReLU(0.1, inplace=True))
# modules.add_module('activation', nn.PReLU(num_parameters=1, init=0.10))
# modules.add_module('activation', Swish())
elif mdef['activation'] == 'mish':
modules.add_module('activation', Mish())
elif mdef['type'] == 'maxpool':
kernel_size = int(mdef['size'])
stride = int(mdef['stride'])
maxpool = nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=int((kernel_size - 1) // 2))
if kernel_size == 2 and stride == 1: # yolov3-tiny
modules.add_module('ZeroPad2d', nn.ZeroPad2d((0, 1, 0, 1)))
modules.add_module('MaxPool2d', maxpool)
else:
modules = maxpool
elif mdef['type'] == 'upsample':
modules = nn.Upsample(scale_factor=int(mdef['stride']), mode='nearest')
elif mdef['type'] == 'route': # nn.Sequential() placeholder for 'route' layer
layers = [int(x) for x in mdef['layers'].split(',')]
filters = sum([output_filters[i + 1 if i > 0 else i] for i in layers])
if 'groups' in mdef:
filters = filters // 2
routs.extend([l if l > 0 else l + i for l in layers])
# if mdef[i+1]['type'] == 'reorg3d':
# modules = nn.Upsample(scale_factor=1/float(mdef[i+1]['stride']), mode='nearest') # reorg3d
elif mdef['type'] == 'shortcut': # nn.Sequential() placeholder for 'shortcut' layer
filters = output_filters[int(mdef['from'])]
layer = int(mdef['from'])
routs.extend([i + layer if layer < 0 else layer])
elif mdef['type'] == 'reorg3d': # yolov3-spp-pan-scale
# torch.Size([16, 128, 104, 104])
# torch.Size([16, 64, 208, 208]) <-- # stride 2 interpolate dimensions 2 and 3 to cat with prior layer
pass
elif mdef['type'] == 'yolo':
yolo_index += 1
mask = [int(x) for x in mdef['mask'].split(',')] # anchor mask
modules = YOLOLayer(anchors=mdef['anchors'][mask], # anchor list
nc=int(mdef['classes']), # number of classes
img_size=img_size, # (416, 416)
yolo_index=yolo_index, # 0, 1 or 2
arc=arc) # yolo architecture
# Initialize preceding Conv2d() bias (https://arxiv.org/pdf/1708.02002.pdf section 3.3)
try:
if arc == 'defaultpw' or arc == 'Fdefaultpw': # default with positive weights
b = [-4, -3.6] # obj, cls
elif arc == 'default': # default no pw (40 cls, 80 obj)
b = [-5.5, -4.0]
elif arc == 'uBCE': # unified BCE (80 classes)
b = [0, -8.5]
elif arc == 'uCE': # unified CE (1 background + 80 classes)
b = [10, -0.1]
elif arc == 'Fdefault': # Focal default no pw (28 cls, 21 obj, no pw)
b = [-2.1, -1.8]
elif arc == 'uFBCE' or arc == 'uFBCEpw': # unified FocalBCE (5120 obj, 80 classes)
b = [0, -6.5]
elif arc == 'uFCE': # unified FocalCE (64 cls, 1 background + 80 classes)
b = [7.7, -1.1]
bias = module_list[-1][0].bias.view(len(mask), -1) # 255 to 3x85
bias[:, 4] += b[0] - bias[:, 4].mean() # obj
bias[:, 5:] += b[1] - bias[:, 5:].mean() # cls
# bias = torch.load('weights/yolov3-spp.bias.pt')[yolo_index] # list of tensors [3x85, 3x85, 3x85]
module_list[-1][0].bias = torch.nn.Parameter(bias.view(-1))
# utils.print_model_biases(model)
except:
print('WARNING: smart bias initialization failure.')
else:
print('Warning: Unrecognized Layer Type: ' + mdef['type'])
# Register module list and number of output filters
module_list.append(modules)
output_filters.append(filters)
return module_list, routs, hyperparams
class Swish(nn.Module):
def __init__(self):
super(Swish, self).__init__()
def forward(self, x):
return x * torch.sigmoid(x)
class Mish(nn.Module): # https://github.com/digantamisra98/Mish
def forward(self, x):
return x.mul(torch.tanh(F.softplus(x)))
class YOLOLayer(nn.Module):
def __init__(self, anchors, nc, img_size, yolo_index, arc):
super(YOLOLayer, self).__init__()
self.anchors = torch.Tensor(anchors)
self.na = len(anchors) # number of anchors (3)
self.nc = nc # number of classes (80)
self.nx = 0 # initialize number of x gridpoints
self.ny = 0 # initialize number of y gridpoints
self.arc = arc
if ONNX_EXPORT: # grids must be computed in __init__
stride = [32, 16, 8][yolo_index] # stride of this layer
nx = int(img_size[1] / stride) # number x grid points
ny = int(img_size[0] / stride) # number y grid points
create_grids(self, img_size, (nx, ny))
def forward(self, p, img_size, var=None):
if ONNX_EXPORT:
bs = 1 # batch size
else:
bs, ny, nx = p.shape[0], p.shape[-2], p.shape[-1]
if (self.nx, self.ny) != (nx, ny):
create_grids(self, img_size, (nx, ny), p.device, p.dtype)
# p.view(bs, 255, 13, 13) -- > (bs, 3, 13, 13, 85) # (bs, anchors, grid, grid, classes + xywh)
p = p.view(bs, self.na, self.nc + 5, self.ny, self.nx).permute(0, 1, 3, 4, 2).contiguous() # prediction
if self.training:
return p
elif ONNX_EXPORT:
# Constants CAN NOT BE BROADCAST, ensure correct shape!
ngu = self.ng.repeat((1, self.na * self.nx * self.ny, 1))
grid_xy = self.grid_xy.repeat((1, self.na, 1, 1, 1)).view((1, -1, 2))
anchor_wh = self.anchor_wh.repeat((1, 1, self.nx, self.ny, 1)).view((1, -1, 2)) / ngu
p = p.view(-1, 5 + self.nc)
xy = torch.sigmoid(p[..., 0:2]) + grid_xy[0] # x, y
wh = torch.exp(p[..., 2:4]) * anchor_wh[0] # width, height
p_conf = torch.sigmoid(p[:, 4:5]) # Conf
p_cls = F.softmax(p[:, 5:85], 1) * p_conf # SSD-like conf
return torch.cat((xy / ngu[0], wh, p_conf, p_cls), 1).t()
# p = p.view(1, -1, 5 + self.nc)
# xy = torch.sigmoid(p[..., 0:2]) + grid_xy # x, y
# wh = torch.exp(p[..., 2:4]) * anchor_wh # width, height
# p_conf = torch.sigmoid(p[..., 4:5]) # Conf
# p_cls = p[..., 5:5 + self.nc]
# # Broadcasting only supported on first dimension in CoreML. See onnx-coreml/_operators.py
# # p_cls = F.softmax(p_cls, 2) * p_conf # SSD-like conf
# p_cls = torch.exp(p_cls).permute((2, 1, 0))
# p_cls = p_cls / p_cls.sum(0).unsqueeze(0) * p_conf.permute((2, 1, 0)) # F.softmax() equivalent
# p_cls = p_cls.permute(2, 1, 0)
# return torch.cat((xy / ngu, wh, p_conf, p_cls), 2).squeeze().t()
else: # inference
# s = 1.5 # scale_xy (pxy = pxy * s - (s - 1) / 2)
io = p.clone() # inference output
io[..., 0:2] = torch.sigmoid(io[..., 0:2]) + self.grid_xy # xy
io[..., 2:4] = torch.exp(io[..., 2:4]) * self.anchor_wh # wh yolo method
# io[..., 2:4] = ((torch.sigmoid(io[..., 2:4]) * 2) ** 3) * self.anchor_wh # wh power method
io[..., :4] *= self.stride
if 'default' in self.arc: # seperate obj and cls
torch.sigmoid_(io[..., 4:])
elif 'BCE' in self.arc: # unified BCE (80 classes)
torch.sigmoid_(io[..., 5:])
io[..., 4] = 1
elif 'CE' in self.arc: # unified CE (1 background + 80 classes)
io[..., 4:] = F.softmax(io[..., 4:], dim=4)
io[..., 4] = 1
if self.nc == 1:
io[..., 5] = 1 # single-class model https://github.com/ultralytics/yolov3/issues/235
# reshape from [1, 3, 13, 13, 85] to [1, 507, 85]
return io.view(bs, -1, 5 + self.nc), p
class Darknet(nn.Module):
# YOLOv3 object detection model
def __init__(self, cfg, img_size=(416, 416), arc='default'):
super(Darknet, self).__init__()
if isinstance(cfg, str):
self.module_defs = parse_model_cfg(cfg)
elif isinstance(cfg, list):
self.module_defs = cfg
self.module_list, self.routs, self.hyperparams = create_modules(self.module_defs, img_size, arc)
self.yolo_layers = get_yolo_layers(self)
# Darknet Header https://github.com/AlexeyAB/darknet/issues/2914#issuecomment-496675346
self.version = np.array([0, 2, 5], dtype=np.int32) # (int32) version info: major, minor, revision
self.seen = np.array([0], dtype=np.int64) # (int64) number of images seen during training
def forward(self, x, var=None):
img_size = x.shape[-2:]
layer_outputs = []
output = []
for i, (mdef, module) in enumerate(zip(self.module_defs, self.module_list)):
mtype = mdef['type']
if mtype in ['convolutional', 'upsample', 'maxpool']:
x = module(x)
elif mtype == 'route':
layers = [int(x) for x in mdef['layers'].split(',')]
if len(layers) == 1:
x = layer_outputs[layers[0]]
if 'groups' in mdef:
x = x[:, (x.shape[1]//2):]
else:
try:
x = torch.cat([layer_outputs[i] for i in layers], 1)
except: # apply stride 2 for darknet reorg layer
layer_outputs[layers[1]] = F.interpolate(layer_outputs[layers[1]], scale_factor=[0.5, 0.5])
x = torch.cat([layer_outputs[i] for i in layers], 1)
# print(''), [print(layer_outputs[i].shape) for i in layers], print(x.shape)
elif mtype == 'shortcut':
x = x + layer_outputs[int(mdef['from'])]
elif mtype == 'yolo':
x = module(x, img_size)
output.append(x)
layer_outputs.append(x if i in self.routs else [])
if self.training:
return output
elif ONNX_EXPORT:
output = torch.cat(output, 1) # cat 3 layers 85 x (507, 2028, 8112) to 85 x 10647
nc = self.module_list[self.yolo_layers[0]].nc # number of classes
return output[5:5 + nc].t(), output[:4].t() # ONNX scores, boxes
else:
io, p = list(zip(*output)) # inference output, training output
return torch.cat(io, 1), p
def fuse(self):
# Fuse Conv2d + BatchNorm2d layers throughout model
fused_list = nn.ModuleList()
for a in list(self.children())[0]:
if isinstance(a, nn.Sequential):
for i, b in enumerate(a):
if isinstance(b, nn.modules.batchnorm.BatchNorm2d):
# fuse this bn layer with the previous conv2d layer
conv = a[i - 1]
fused = torch_utils.fuse_conv_and_bn(conv, b)
a = nn.Sequential(fused, *list(a.children())[i + 1:])
break
fused_list.append(a)
self.module_list = fused_list
# model_info(self) # yolov3-spp reduced from 225 to 152 layers
def get_yolo_layers(model):
return [i for i, x in enumerate(model.module_defs) if x['type'] == 'yolo'] # [82, 94, 106] for yolov3
def create_grids(self, img_size=416, ng=(13, 13), device='cpu', type=torch.float32):
nx, ny = ng # x and y grid size
self.img_size = max(img_size)
self.stride = self.img_size / max(ng)
# build xy offsets
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
self.grid_xy = torch.stack((xv, yv), 2).to(device).type(type).view((1, 1, ny, nx, 2))
# build wh gains
self.anchor_vec = self.anchors.to(device) / self.stride
self.anchor_wh = self.anchor_vec.view(1, self.na, 1, 1, 2).to(device).type(type)
self.ng = torch.Tensor(ng).to(device)
self.nx = nx
self.ny = ny
def load_darknet_weights(self, weights, cutoff=-1):
# Parses and loads the weights stored in 'weights'
# Establish cutoffs (load layers between 0 and cutoff. if cutoff = -1 all are loaded)
file = Path(weights).name
if file == 'darknet53.conv.74':
cutoff = 75
elif file == 'yolov3-tiny.conv.15':
cutoff = 15
elif file == 'yolov4-tiny.conv.29':
cutoff = 29
# Read weights file
with open(weights, 'rb') as f:
# Read Header https://github.com/AlexeyAB/darknet/issues/2914#issuecomment-496675346
self.version = np.fromfile(f, dtype=np.int32, count=3) # (int32) version info: major, minor, revision
self.seen = np.fromfile(f, dtype=np.int64, count=1) # (int64) number of images seen during training
weights = np.fromfile(f, dtype=np.float32) # The rest are weights
ptr = 0
for i, (mdef, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])):
if mdef['type'] == 'convolutional':
conv_layer = module[0]
if mdef['batch_normalize']:
# Load BN bias, weights, running mean and running variance
bn_layer = module[1]
num_b = bn_layer.bias.numel() # Number of biases
# Bias
bn_b = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.bias)
bn_layer.bias.data.copy_(bn_b)
ptr += num_b
# Weight
bn_w = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.weight)
bn_layer.weight.data.copy_(bn_w)
ptr += num_b
# Running Mean
bn_rm = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.running_mean)
bn_layer.running_mean.data.copy_(bn_rm)
ptr += num_b
# Running Var
bn_rv = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.running_var)
bn_layer.running_var.data.copy_(bn_rv)
ptr += num_b
# Load conv. weights
num_w = conv_layer.weight.numel()
conv_w = torch.from_numpy(weights[ptr:ptr + num_w]).view_as(conv_layer.weight)
conv_layer.weight.data.copy_(conv_w)
ptr += num_w
else:
if os.path.basename(file) == 'yolov3.weights' or os.path.basename(file) == 'yolov3-tiny.weights' or os.path.basename(file) == 'yolov3-spp.weights' or os.path.basename(file) == 'yolov4.weights':
#加载权重'yolov3.weights' 或者 'yolov3-tiny-weights.' 是为了更好初始化自己模型权重,要避免同名
num_b = 255
ptr += num_b
num_w = int(self.module_defs[i-1]["filters"]) * 255
ptr += num_w
else:
# Load conv. bias
num_b = conv_layer.bias.numel()
conv_b = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(conv_layer.bias)
conv_layer.bias.data.copy_(conv_b)
ptr += num_b
# Load conv. weights
num_w = conv_layer.weight.numel()
conv_w = torch.from_numpy(weights[ptr:ptr + num_w]).view_as(conv_layer.weight)
conv_layer.weight.data.copy_(conv_w)
ptr += num_w
assert ptr == len(weights)
return cutoff
def save_weights(self, path='model.weights', cutoff=-1):
# Converts a PyTorch model to Darket format (*.pt to *.weights)
# Note: Does not work if model.fuse() is applied
with open(path, 'wb') as f:
# Write Header https://github.com/AlexeyAB/darknet/issues/2914#issuecomment-496675346
self.version.tofile(f) # (int32) version info: major, minor, revision
self.seen.tofile(f) # (int64) number of images seen during training
# Iterate through layers
for i, (mdef, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])):
if mdef['type'] == 'convolutional':
conv_layer = module[0]
# If batch norm, load bn first
if mdef['batch_normalize']:
bn_layer = module[1]
bn_layer.bias.data.cpu().numpy().tofile(f)
bn_layer.weight.data.cpu().numpy().tofile(f)
bn_layer.running_mean.data.cpu().numpy().tofile(f)
bn_layer.running_var.data.cpu().numpy().tofile(f)
# Load conv bias
else:
conv_layer.bias.data.cpu().numpy().tofile(f)
# Load conv weights
conv_layer.weight.data.cpu().numpy().tofile(f)
def convert(cfg='cfg/yolov3-spp.cfg', weights='weights/yolov3-spp.weights'):
# Converts between PyTorch and Darknet format per extension (i.e. *.weights convert to *.pt and vice versa)
# from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')
# Initialize model
model = Darknet(cfg)
# Load weights and save
if weights.endswith('.pt'): # if PyTorch format
model.load_state_dict(torch.load(weights, map_location='cpu')['model'])
save_weights(model, path='converted.weights', cutoff=-1)
print("Success: converted '%s' to 'converted.weights'" % weights)
elif weights.endswith('.weights'): # darknet format
_ = load_darknet_weights(model, weights)
chkpt = {'epoch': -1,
'best_fitness': None,
'training_results': None,
'model': model.state_dict(),
'optimizer': None}
torch.save(chkpt, 'converted.pt')
print("Success: converted '%s' to 'converted.pt'" % weights)
else:
print('Error: extension not supported.')
def attempt_download(weights):
# Attempt to download pretrained weights if not found locally
msg = weights + ' missing, download from https://drive.google.com/drive/folders/1uxgUBemJVw9wZsdpboYbzUN4bcRhsuAI'
if weights and not os.path.isfile(weights):
file = Path(weights).name
if file == 'yolov3-spp.weights':
gdrive_download(id='1oPCHKsM2JpM-zgyepQciGli9X0MTsJCO', name=weights)
elif file == 'yolov3-spp.pt':
gdrive_download(id='1vFlbJ_dXPvtwaLLOu-twnjK4exdFiQ73', name=weights)
elif file == 'yolov3.pt':
gdrive_download(id='11uy0ybbOXA2hc-NJkJbbbkDwNX1QZDlz', name=weights)
elif file == 'yolov3-tiny.pt':
gdrive_download(id='1qKSgejNeNczgNNiCn9ZF_o55GFk1DjY_', name=weights)
elif file == 'darknet53.conv.74':
gdrive_download(id='18xqvs_uwAqfTXp-LJCYLYNHBOcrwbrp0', name=weights)
elif file == 'yolov3-tiny.conv.15':
gdrive_download(id='140PnSedCsGGgu3rOD6Ez4oI6cdDzerLC', name=weights)
else:
try: # download from pjreddie.com
url = 'https://pjreddie.com/media/files/' + file
print('Downloading ' + url)
os.system('curl -f ' + url + ' -o ' + weights)
except IOError:
print(msg)
os.system('rm ' + weights) # remove partial downloads
assert os.path.exists(weights), msg # download missing weights from Google Drive