-
Notifications
You must be signed in to change notification settings - Fork 184
/
welzl.cpp
48 lines (47 loc) · 1.65 KB
/
welzl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
// Minimum enclosing circle, Welzl's algorithm
// Expected linear time.
// If there are any duplicate points in the input, be sure to remove them first.
struct point {
double x;
double y;
};
struct circle {
double x;
double y;
double r;
circle() {}
circle(double x, double y, double r): x(x), y(y), r(r) {}
};
circle b_md(vector<point> R) {
if (R.size() == 0) {
return circle(0, 0, -1);
} else if (R.size() == 1) {
return circle(R[0].x, R[0].y, 0);
} else if (R.size() == 2) {
return circle((R[0].x+R[1].x)/2.0,
(R[0].y+R[1].y)/2.0,
hypot(R[0].x-R[1].x, R[0].y-R[1].y)/2.0);
} else {
double D = (R[0].x - R[2].x)*(R[1].y - R[2].y) - (R[1].x - R[2].x)*(R[0].y - R[2].y);
double p0 = (((R[0].x - R[2].x)*(R[0].x + R[2].x) + (R[0].y - R[2].y)*(R[0].y + R[2].y)) / 2 * (R[1].y - R[2].y) - ((R[1].x - R[2].x)*(R[1].x + R[2].x) + (R[1].y - R[2].y)*(R[1].y + R[2].y)) / 2 * (R[0].y - R[2].y))/D;
double p1 = (((R[1].x - R[2].x)*(R[1].x + R[2].x) + (R[1].y - R[2].y)*(R[1].y + R[2].y)) / 2 * (R[0].x - R[2].x) - ((R[0].x - R[2].x)*(R[0].x + R[2].x) + (R[0].y - R[2].y)*(R[0].y + R[2].y)) / 2 * (R[1].x - R[2].x))/D;
return circle(p0, p1, hypot(R[0].x - p0, R[0].y - p1));
}
}
circle b_minidisk(vector<point>& P, int i, vector<point> R) {
if (i == P.size() || R.size() == 3) {
return b_md(R);
} else {
circle D = b_minidisk(P, i+1, R);
if (hypot(P[i].x-D.x, P[i].y-D.y) > D.r) {
R.push_back(P[i]);
D = b_minidisk(P, i+1, R);
}
return D;
}
}
// Call this function.
circle minidisk(vector<point> P) {
random_shuffle(P.begin(), P.end());
return b_minidisk(P, 0, vector<point>());
}