Skip to content

Latest commit

 

History

History
83 lines (61 loc) · 1.69 KB

README.md

File metadata and controls

83 lines (61 loc) · 1.69 KB

Training

  1. To download GoPro training and testing data, run
python download_data.py --data train-test
  1. Generate image patches from full-resolution training images of GoPro dataset
python generate_patches_gopro.py 
  1. To train Restormer, run
cd Restormer
./train.sh Motion_Deblurring/Options/Deblurring_Restormer.yml

Note: The above training script uses 8 GPUs by default. To use any other number of GPUs, modify Restormer/train.sh and Motion_Deblurring/Options/Deblurring_Restormer.yml

Evaluation

Download the pre-trained model and place it in ./pretrained_models/

Testing on GoPro dataset

  • Download GoPro testset, run
python download_data.py --data test --dataset GoPro
  • Testing
python test.py --dataset GoPro

Testing on HIDE dataset

  • Download HIDE testset, run
python download_data.py --data test --dataset HIDE
  • Testing
python test.py --dataset HIDE

Testing on RealBlur-J dataset

  • Download RealBlur-J testset, run
python download_data.py --data test --dataset RealBlur_J
  • Testing
python test.py --dataset RealBlur_J

Testing on RealBlur-R dataset

  • Download RealBlur-R testset, run
python download_data.py --data test --dataset RealBlur_R
  • Testing
python test.py --dataset RealBlur_R

To reproduce PSNR/SSIM scores of the paper (Table 2) on GoPro and HIDE datasets, run this MATLAB script

evaluate_gopro_hide.m 

To reproduce PSNR/SSIM scores of the paper (Table 2) on RealBlur dataset, run

evaluate_realblur.py