-
Notifications
You must be signed in to change notification settings - Fork 1
/
nov2g_ev_scheduler_v3.py
210 lines (157 loc) · 8.72 KB
/
nov2g_ev_scheduler_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import numpy as np
import cvxpy as cp # type: ignore
def get_c_vpp(available_v2g_ev_lst, c_vpp_dept_times_lst, c_vpp_soc_init_lst, c_vpp_I_EV_charging, c_vpp_D_EV_charging, c_vpp_D_EV_charging_count, c_vpp_pv_diff_lst, N_EV, p_im, current_time, tau):
# Constants
ALPHA_C = 11
# Javier changes for nov2g
#ALPHA_D = -11
ALPHA_D = 0
B_CAP = 80
ETA_C = 0.98
ETA_D = 0.98
FINAL_SOC = 0.97
DAY_HRS = 24
# Input
I_EV_charging = c_vpp_I_EV_charging
D_EV_charging = c_vpp_D_EV_charging
D_EV_charging_count = c_vpp_D_EV_charging_count
# Variables
#SELECT_M = cp.Variable((N_EV, DAY_HRS),boolean=True)
AD = cp.Variable((N_EV, DAY_HRS),nonpos=True)
AC = cp.Variable((N_EV, DAY_HRS),nonneg=True)
y = cp.Variable((N_EV, DAY_HRS))
soc_t = cp.Variable((N_EV, DAY_HRS),nonneg=True)
lax_t = cp.Variable((N_EV, DAY_HRS),nonneg=True)
z = cp.Variable(DAY_HRS)
constraints = []
for ev in range(N_EV):
for t in range(current_time):
#constraints += [SELECT_M[ev][t] == 0]
constraints += [AD[ev][t] == 0]
constraints += [AC[ev][t] == 0]
constraints += [y[ev][t] == 0]
constraints += [soc_t[ev][t] == 0]
constraints += [lax_t[ev][t] == 0]
for ev_idx, ev in enumerate(available_v2g_ev_lst):
for t in range(current_time, ev.departure_time): # JS: Important, here is the optimization horizon!!!
#print('TTT ', t)
if (D_EV_charging[ev_idx][t] < 0):
if(np.abs(D_EV_charging[ev_idx][t]) > np.abs(ALPHA_D)):
D_EV_charging[ev_idx][t] = ALPHA_D
constraints += [AD[ev_idx][t] >= D_EV_charging[ev_idx][t] * D_EV_charging_count[ev_idx][t] ]
#constraints += [AD[ev_idx][t] >= D_EV_charging[ev_idx][t] * SELECT_M[ev_idx][t]]
constraints += [AC[ev_idx][t] <= I_EV_charging[ev_idx][t] * ALPHA_C ]
#constraints += [AC[ev_idx][t] <= I_EV_charging[ev_idx][t] * (1-SELECT_M[ev_idx][t]) * ALPHA_C]
#D_EV_charging[ev_idx][t] = 1
else:
constraints += [AD[ev_idx][t] == 0]
constraints += [AC[ev_idx][t] <= I_EV_charging[ev_idx][t] * ALPHA_C]
constraints += [y[ev_idx][t] == (AC[ev_idx][t] + AD[ev_idx][t])]
if (t == current_time):
constraints += [soc_t[ev_idx][t] == c_vpp_soc_init_lst[ev_idx] + ((I_EV_charging[ev_idx][t] * AC[ev_idx][t] * ETA_C)/B_CAP + (D_EV_charging_count[ev_idx][t] * (AD[ev_idx][t]/ETA_D))/B_CAP)]
else:
constraints += [soc_t[ev_idx][t] == soc_t[ev_idx][t-1] + ((I_EV_charging[ev_idx][t] * AC[ev_idx][t] * ETA_C)/B_CAP + (D_EV_charging_count[ev_idx][t] * (AD[ev_idx][t]/ETA_D))/B_CAP)]
constraints += [soc_t[ev_idx][t] >= (1-FINAL_SOC)]
#constraints += [soc_t[ev_idx][t] <= (FINAL_SOC)]
constraints += [lax_t[ev_idx][t] == I_EV_charging[ev_idx][t] * (((c_vpp_dept_times_lst[ev_idx]-(t+1)) - (((FINAL_SOC - soc_t[ev_idx][t])*B_CAP)/(ALPHA_C*ETA_C))))]
if ((t+1) < ev.departure_time):
constraints += [lax_t[ev_idx][t] >= 0.001]
#constraints += [lax_t[ev_idx][t] >= 0.0001]
#if (t == (ev.departure_time - 1)):
# constraints += [soc_t[ev_idx][t] <= FINAL_SOC]
#constraints += [cp.sum(AD[ev_idx]) <= tau]
for ev_idx, ev in enumerate(available_v2g_ev_lst):
for t in range(ev.departure_time, DAY_HRS):
#constraints += [SELECT_M[ev_idx][t] == 0]
constraints += [AD[ev_idx][t] == 0]
constraints += [AC[ev_idx][t] == 0]
constraints += [y[ev_idx][t] == 0]
constraints += [soc_t[ev_idx][t] == 0]
constraints += [lax_t[ev_idx][t] == 0]
for t in range(DAY_HRS):
constraints += [z[t] == cp.sum(y, axis=0)[t]]
c_vpp = np.sum(c_vpp_pv_diff_lst - z) @ p_im.T
obj = cp.Maximize(c_vpp)
problem = cp.Problem(obj, constraints)
problem.solve(cp.MOSEK, mosek_params = {'MSK_IPAR_NUM_THREADS': 8, 'MSK_IPAR_BI_MAX_ITERATIONS': 2_000_000, "MSK_IPAR_INTPNT_MAX_ITERATIONS": 800}, verbose=False)
if problem.status != 'optimal':
#raise Exception("Optimal schedule not found")
print("!!! Optimal schedule not found")
#print('AD ', AD.value)
#print("EV SCHEDD ", y.value)
#print('SOCCC AFTER CHARGE ',soc_t.value)
#print('=================================')
return y.value
def get_c_vpp_input(available_ev_lst, E_im_price, E_VPP, current_time, tau):
DAY_HRS = 24
c_vpp_dept_times_lst = []
c_vpp_soc_init_lst = []
c_vpp_I_EV_charging = []
c_vpp_D_EV_charging = []
c_vpp_D_EV_charging_count = []
p_im = []
c_vpp_pv_diff_lst = []
for idx, ev in enumerate(available_ev_lst):
if (ev != 0 and ev.completed == False):
temp_I_EV_charging = []
temp_D_EV_charging = []
temp_D_EV_charging_count = []
c_vpp_dept_times_lst.append(ev.departure_time)
c_vpp_soc_init_lst.append(ev.soc_t)
for t in range(DAY_HRS):
if (t >= 24):
t = 23
#if((t >= ev.departure_time) or (t < ev.arrival_time)):
if((t >= ev.departure_time) or (t < current_time)):
temp_I_EV_charging.append(0)
temp_D_EV_charging.append(0)
temp_D_EV_charging_count.append(0)
else:
temp_I_EV_charging.append(1)
if (ev.allow_discharge == True):
if ( (t >= (ev.arrival_time)) and (t <= (ev.arrival_time + (tau - 1))) ):
# since contract duration is 1 so discharge MUST be done within first hour
if(ev.new_v2g_val != -1000):
temp_D_EV_charging.append(-1 * ev.new_v2g_val)
temp_D_EV_charging_count.append(1)
else:
temp_D_EV_charging.append(-1 * ev.remaining_discharge_e)
temp_D_EV_charging_count.append(1)
else:
temp_D_EV_charging.append(0)
temp_D_EV_charging_count.append(0)
else:
temp_D_EV_charging.append(0)
temp_D_EV_charging_count.append(0)
c_vpp_I_EV_charging.append(temp_I_EV_charging)
c_vpp_D_EV_charging.append(temp_D_EV_charging)
c_vpp_D_EV_charging_count.append(temp_D_EV_charging_count)
for t in range(DAY_HRS):
if(t < current_time or t >= c_vpp_dept_times_lst[-1]):
p_im.append(0)
c_vpp_pv_diff_lst.append(0)
else:
p_im.append(E_im_price[t])
c_vpp_pv_diff_lst.append(E_VPP[t])
p_im = np.array(p_im)
c_vpp_pv_diff_lst = np.array(c_vpp_pv_diff_lst)
c_vpp_I_EV_charging = np.vstack(c_vpp_I_EV_charging)
c_vpp_D_EV_charging = np.vstack(c_vpp_D_EV_charging)
c_vpp_D_EV_charging_count = np.vstack(c_vpp_D_EV_charging_count)
#print('current_time ', current_time)
#print('I_EV ',c_vpp_I_EV_charging)
#print('D_EV ',c_vpp_D_EV_charging)
#print('D_EV_count ',c_vpp_D_EV_charging_count)
#print('SOC BEFORE',c_vpp_soc_init_lst)
#print('DEPT_T ',c_vpp_dept_times_lst)
return c_vpp_dept_times_lst, c_vpp_soc_init_lst, c_vpp_I_EV_charging, c_vpp_D_EV_charging, c_vpp_D_EV_charging_count, p_im, c_vpp_pv_diff_lst
def offer_discharge_incentive(seed, available_v2g_ev_lst, current_time, E_im_price, E_VPP, tau):
#tau = 3
DAY_HRS = 24
rng = np.random.default_rng(seed)
c_vpp_dept_times_lst, c_vpp_soc_init_lst, c_vpp_I_EV_charging, c_vpp_D_EV_charging, c_vpp_D_EV_charging_count, p_im, c_vpp_pv_diff_lst = get_c_vpp_input(available_v2g_ev_lst, E_im_price, E_VPP, current_time, tau)
N_EV = c_vpp_I_EV_charging.shape[0]
new_EV_schedule = get_c_vpp(available_v2g_ev_lst, c_vpp_dept_times_lst, c_vpp_soc_init_lst, c_vpp_I_EV_charging, c_vpp_D_EV_charging, c_vpp_D_EV_charging_count, c_vpp_pv_diff_lst, N_EV, p_im, current_time, tau)
return new_EV_schedule
def main(seed, available_v2g_ev_lst, current_time, E_im_price, E_VPP, tau):
return offer_discharge_incentive(seed, available_v2g_ev_lst, current_time, E_im_price, E_VPP, tau)