-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
70 lines (54 loc) · 2.84 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
## TODO: define the convolutional neural network architecture
import torch
import torch.nn as nn
import torch.nn.functional as F
# can use the below import should you choose to initialize the weights of your Net
import torch.nn.init as I
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
## TODO: Define all the layers of this CNN, the only requirements are:
## 1. This network takes in a square (same width and height), grayscale image as input
## 2. It ends with a linear layer that represents the keypoints
## it's suggested that you make this last layer output 136 values, 2 for each of the 68 keypoint (x, y) pairs
# As an example, you've been given a convolutional layer, which you may (but don't have to) change:
# 1 input image channel (grayscale), 32 output channels/feature maps, 5x5 square convolution kernel
self.conv1 = nn.Conv2d(1, 32, 4,bias=False) #111*111*32 (after mp)
self.batch_norm1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32,64,3,bias=False) #55*55*64
self.batch_norm2 = nn.BatchNorm2d(64)
self.conv3 = nn.Conv2d(64,128,2,bias=False) #27*27*128
self.batch_norm3 = nn.BatchNorm2d(128)
self.conv4 = nn.Conv2d(128,256,1,bias=True) #13*13*256
self.pool = nn.MaxPool2d(2,2)
self.fc1 = nn.Linear (13*13*256, 1000)
self.fc2 = nn.Linear (1000, 1000)
self.fc3 = nn.Linear(1000,136)
self.drop1 = nn.Dropout(p = 0.1)
self.drop2 = nn.Dropout(p = 0.2)
self.drop3 = nn.Dropout(p = 0.3)
self.drop4 = nn.Dropout(p = 0.4)
self.drop5 = nn.Dropout(p = 0.5)
self.drop6 = nn.Dropout(p = 0.6)
## Note that among the layers to add, consider including:
# maxpooling layers, multiple conv layers, fully-connected layers, and other layers (such as dropout or batch normalization) to avoid overfitting
def forward(self, x):
## TODO: Define the feedforward behavior of this model
## x is the input image and, as an example, here you may choose to include a pool/conv step:
## x = self.pool(F.relu(self.conv1(x)))
x = self.batch_norm1(self.pool(F.relu(self.conv1(x))))
x = self.drop1(x)
x = self.batch_norm2(self.pool(F.relu(self.conv2(x))))
x = self.drop2(x)
x = self.batch_norm3(self.pool(F.relu(self.conv3(x))))
x = self.drop3(x)
x = self.pool(F.relu(self.conv4(x)))
x = self.drop4(x)
x = x.view(x.size(0),-1)
x = F.relu(self.fc1(x))
x = self.drop5(x)
x = F.relu(self.fc2(x))
x = self.drop6(x)
x = self.fc3(x)
# a modified x, having gone through all the layers of your model, should be returned
return x