-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict_page.py
63 lines (50 loc) · 1.65 KB
/
predict_page.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import streamlit as st
import pickle
import numpy as np
def load_model():
with open('saved_steps.pkl', 'rb') as file:
data = pickle.load(file)
return data
data = load_model()
regressor = data["model"]
le_country = data["le_country"]
le_education = data["le_education"]
def show_predict_page():
st.title("** PROJECT **: Salary-Prediction")
st.write("""
This is a Machine Learning project bulit by using **[Streamlit](https://streamlit.io/)**. This application can predict Software Developer Salary based on data collected from **[Stackoverflow Developer Survey 2020](https://insights.stackoverflow.com/survey/2020)**
""")
st.write("""### We need some information to predict the salary""")
countries = (
"United States",
"India",
"United Kingdom",
"Germany",
"Canada",
"Brazil",
"France",
"Spain",
"Australia",
"Netherlands",
"Poland",
"Italy",
"Russian Federation",
"Sweden",
)
education = (
"Less than a Bachelors",
"Bachelor’s degree",
"Master’s degree",
"Post grad",
)
country = st.selectbox("Country", countries)
education = st.selectbox("Education Level", education)
expericence = st.slider("Years of Experience", 0, 50, 3)
ok = st.button("Calculate Salary")
if ok:
X = np.array([[country, education, expericence ]])
X[:, 0] = le_country.transform(X[:,0])
X[:, 1] = le_education.transform(X[:,1])
X = X.astype(float)
salary = regressor.predict(X)
st.subheader(f"The estimated salary is ${salary[0]:.2f}")