-
Notifications
You must be signed in to change notification settings - Fork 1
/
manual.autodoc
382 lines (328 loc) · 24.5 KB
/
manual.autodoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
@Chapter Introduction
This package, `SL2Reps`, provides methods for constructing and testing matrix
presentations of the representations of $\mathrm{SL}_2(\mathbb{Z})$ whose kernels are congruence subgroups of $\mathrm{SL}_2(\mathbb{Z})$.
Irreducible representations of prime-power level are constructed individually by using the Weil representations of quadratic modules, and from these a list of all representations of a given degree
or level can be produced. Each representation is represented by a pair $(S,T)$, where $S$ is a symmetric,
unitary matrix and $T$ is a diagonal matrix of finite order; this format is designed for the study of modular tensor categories in particular.
@Section Installation
To install `SL2Reps`, first download it from <URL>https://snw-0.github.io/sl2-reps/</URL>, then place it in the `pkg`
subdirectory of your GAP installation (or in the `pkg` subdirectory of any other GAP
root directory, for example one added with the `-l` argument).
`SL2Reps` is then loaded with the GAP command
`gap> LoadPackage( "SL2Reps" );`
@Section Usage
Specific irreducible representations may be constructed via the methods in Chapter <Ref Chap="Chapter_Irreps"/>, while lists of irreducible representations with a given degree or level may be constructed with those in Chapter <Ref Chap="Chapter_Lists"/>.
This package uses an `InfoClass`, `InfoSL2Reps`. It may be set to `0` (silent),
`1` (info), or `2` (verbose). To change it, use
`gap> SetInfoLevel( InfoSL2Reps, k );`
@Chapter Description
The group $\mathrm{SL}_2(\mathbb{Z})$ is generated by $\mathfrak{s}$ = `[[0,1],[-1,0]]` and $\mathfrak{t}$ = `[[1,1],[0,1]]` (which satisfy the relations $\mathfrak{s}^4 = (\mathfrak{st})^3 = \mathrm{id}$).
Thus, any complex representation $\rho$ of $\mathrm{SL}_2(\mathbb{Z})$ on $\mathbb{C}^n$ (where $n \in \mathbb{Z}^+$ is called the **degree** or **dimension** of $\rho$) is determined by the $n \times n$ matrices $S = \rho(\mathfrak{s})$ and $T = \rho(\mathfrak{t})$.
This package constructs irreducible representations of $\mathrm{SL}_2(\mathbb{Z})$ which factor through $\mathrm{SL}_2(\mathbb{Z}/\ell\mathbb{Z})$ for some $\ell \in \mathbb{Z}^+$; the smallest such $\ell$ is called the **level** of the representation, and is equal to the order of $T$. One may equivalently say that the kernel of the representation is a congruence subgroup. Such representations are called **congruent** representations. A congruent representation $\rho$ is called **symmetric** if $S = \rho(\mathfrak{s})$ is a symmetric, unitary matrix and $T = \rho(\mathfrak{t})$ is a diagonal matrix; it was proved by the authors that every congruent representation is equivalent to a symmetric one (see <Ref Sect="Chapter_Description_Section_Construction_Subsection_S_and_T_matrices"/>). Any representation of $\mathrm{SL}_2(\mathbb{Z})$ arising from a modular tensor category is symmetric <Cite Key="DLN15"/>.
We therefore present representations in the form of a record `rec(S, T, degree, level, name)`, where the name follows the conventions of <Cite Key="NW76"/>.
Note that our definition of $\mathfrak{s}$ follows that of <Cite Key="Nobs1"/>; other authors prefer the inverse, i.e. $\mathfrak{s}$ = `[[0,-1],[1,0]]` (under which convention the relations are $\mathfrak{s}^4 = \mathrm{id}$, $(\mathfrak{s}\mathfrak{t})^3 = \mathfrak{s}^2$). When working with that convention, one must invert the $S$ matrices output by this package.
Throughout, we denote by $\mathbf{e}$ the map $k \mapsto e^{2 \pi i k}$ (an isomorphism from $\mathbb{Q}/\mathbb{Z}$ to the group of finite roots of unity in $\mathbb{C}$). For a group $G$, we denote by $\widehat{G}$ the character group $\operatorname{Hom}(G, \mathbb{C}^\times)$.
@Section Construction
Any representation $\rho$ of $\mathrm{SL}_2(\mathbb{Z})$ can be decomposed into a direct sum of irreducible representations (irreps). Further, if $\rho$ has finite level, each irrep can be factorized into a tensor product of irreps whose levels are powers of distinct primes (using the Chinese remainder theorem). Therefore, to characterize all finite-dimensional representations of $\mathrm{SL}_2(\mathbb{Z})$ of finite level, it suffices to consider irreps of $\mathrm{SL}_2(\mathbb{Z}/p^\lambda\mathbb{Z})$ for primes $p$ and positive integers $\lambda$.
@Subsection Weil representations
Such representations may be constructed using Weil representations as described in <Cite Key="Nobs1" Where="Section 1"/>. We give a brief summary of the process here. First, if $M$ is any additive abelian group, a **quadratic form** on $M$ is a map $Q : M \to \mathbb{Q}/\mathbb{Z}$ such that
<List>
<Item>$Q(-x) = Q(x)$ for all $x \in M$, and</Item>
<Item>$B(x,y) = Q(x+y) - Q(x) - Q(y)$ defines a $\mathbb{Z}$-bilinear map $M \times M \to \mathbb{Q}/\mathbb{Z}$.</Item>
</List>
Now let $p$ be a prime number and $\lambda \in \mathbb{Z}^+$. Choose a $\mathbb{Z}/p^\lambda\mathbb{Z}$-module $M$ and a quadratic form $Q$ on $M$ such that the pair $(M,Q)$ is of one of the three types described in Section <Ref Sect="Chapter_Description_Section_Weil"/>. Each such $M$ is a ring, and has at most 2 cyclic factors as an additive group. Those with 2 cyclic factors may be identified with a quotient of the quadratic integers, giving a norm on $M$. Then the **quadratic module** $(M,Q)$ gives rise to a representation of $\mathrm{SL}_2(\mathbb{Z}/p^\lambda\mathbb{Z})$ on the vector space $V = \mathbb{C}^M$ of complex-valued functions on $M$. This representation is denoted $W(M,Q)$. Note that the **central charge** of $(M,Q)$ is given by $S_Q(-1) = \frac{1}{\sqrt{|M|}} \sum_{x \in M} \mathbf{e}(Q(x))$.
@Subsection Character subspaces and primitive characters
A family of subrepresentations $W(M,Q,\chi)$ of $W(M,Q)$ may be constructed as follows. Denote
$$\operatorname{Aut}(M,Q) = \{ \varepsilon \in \operatorname{Aut}(M) \mid Q(\varepsilon x) = Q(x) \text{ for all } x \in M\}~.$$
We then associate to $(M,Q)$ an abelian subgroup $\mathfrak{A} \leq \operatorname{Aut}(M,Q)$; the structure of this group depends on $(M,Q)$ and is described in Section <Ref Sect="Chapter_Description_Section_Weil"/>. Note that $\mathfrak{A}$ has at most two cyclic factors, whose generators we denote by $\alpha$ and $\beta$. Now, let $\chi \in \widehat{\mathfrak{A}}$ be a 1-dimensional representation (**character**) of $\mathfrak{A}$, and define
$$V_\chi = \{f \in V \mid f(\varepsilon x) = \chi(\varepsilon) f(x) \text{ for all } x \in M \text{ and } \varepsilon \in \mathfrak{A}\}~,$$
which is a $\mathrm{SL}_2(\mathbb{Z}/p^\lambda\mathbb{Z})$-invariant subspace of $V$. We then denote by $W(M,Q,\chi)$ the subrepresentation of $W(M,Q)$ on $V_\chi$. Note that $W(M,Q,\chi) \cong W(M,Q,\overline{\chi})$.
For the abelian groups $\mathfrak{A} \leq \operatorname{Aut}(M,Q)$, we will frequently refer to a character $\chi \in \widehat{\mathfrak{A}}$ as being **primitive**. With the exception of a single family of modules of type $R$ (the **extremal** case, for which see Section <Ref Sect="Chapter_Description_Section_Weil_Subsection_Type_R_Special"/>), primitivity amounts to the following: there exists some $\varepsilon \in \mathfrak{A}$ such that $\chi(\varepsilon) \neq 1$ and $\varepsilon$ fixes the submodule $pM \subset M$ pointwise. There exists a subgroup $\mathfrak{A}_0 \leq \mathfrak{A}$ such that a non-trivial $\chi \in \widehat{\mathfrak{A}}$ is primitive if and only if $\chi$ is injective on $\mathfrak{A}_0$ (or, equivalently, if $\mathfrak{A}_0 \cap \operatorname{ker} \chi$ is trivial).
Explicit descriptions of the group $\mathfrak{A}_0$ for each type are given in Section <Ref Sect="Chapter_Description_Section_Weil"/> and may be used to determine the primitive characters.
@Subsection Irrep Types
All irreps of prime-power level and finite degree may then be constructed in one of three ways (<Cite Key="NW76" Where="Hauptsatz 2"/>):
<List>
<Item>The overwhelming majority are of the form $W(M,Q,\chi)$ for $\chi$ primitive and $\chi^2 \neq 1$; we call these **standard**. This includes the primitive characters from the extremal case.</Item>
<Item>A finite number, and a single infinite family arising from the extremal case (Section <Ref Sect="Chapter_Description_Section_Weil_Subsection_Type_R_Special"/>), are instead constructed by using non-primitive characters or primitive characters $\chi$ with $\chi^2 = 1$. We call these **non-standard**.</Item>
<Item>Finally, 18 **exceptional** irreps are constructed as tensor products of two irreps from the other two cases. A full list of these may be constructed by <Ref Func="SL2IrrepsExceptional"/>.</Item>
</List>
@Subsection S and T matrices
The images $W(M,Q)(\mathfrak{s})(f)$ and $W(M,Q)(\mathfrak{t})(f)$ may be calculated for any $f \in V$ (see <Cite Key="Nobs1" Where="Satz 2"/>). Thus, to construct $S$ and $T$ matrices for the irreducible subrepresentations of $W(M,Q)$, it suffices to find bases for the $W(M,Q)$-invariant subspaces of $V$. Choices for such bases are given by <Cite Key="NW76"/>; however, these often result in non-symmetric $S$ matrices. It has been proven by the authors of this package that, for all standard and non-standard irreps, there exists a basis for the corresponding subspace of $V$ such that $S$ is symmetric and unitary and $T$ is diagonal (<Cite Key="NWWi"/>, in preparation). In particular, $S$ is always either a real matrix or $i$ times a real matrix. It follows that these properties hold for the exceptional irreps as well. This package therefore produces matrices with these properties.
All the finite-dimensional irreducible representations of $\mathrm{SL}_2(\mathbb{Z})$ of finite level can now be constructed by taking tensor products of these prime-power irreps. Note that, if two representations are determined by pairs `[S1,T1]` and `[S2,T2]`, then the pair for their tensor product may be calculated via the GAP command `KroneckerProduct`, namely as `[KroneckerProduct(S1,S2),KroneckerProduct(T1,T2)]`.
@Section Weil
@SectionTitle Weil representation types
@Subsection Type D
Let $p$ be prime. If $p=2$ or $p=3$, let $\lambda \geq 2$; otherwise, let $\lambda \geq 1$. Then the Weil representation arising from the quadratic module with $$M = \mathbb{Z}/p^\lambda\mathbb{Z} \oplus \mathbb{Z}/p^\lambda\mathbb{Z} \qquad \text{and} \qquad Q(x,y) = \frac{xy}{p^\lambda}$$ is said to be of type $D$ and denoted $D(p,\lambda)$. Information on type $D$ quadratic modules may be obtained via <Ref Func="SL2ModuleD"/>, and subrepresentations of $D(p,\lambda)$ with level $p^\lambda$ may be constructed via <Ref Func="SL2IrrepD"/>.
The group
$$\mathfrak{A} \cong (\mathbb{Z}/p^\lambda\mathbb{Z})^\times$$
acts on $M$ by $a(x,y) = (a^{-1}x, ay)$ and is thus identified with a subgroup of $\operatorname{Aut}(M,Q)$; see <Cite Key="NW76" Where="Section 2.1"/>. The group $\mathfrak{A}$ has order $p^{\lambda-1}(p-1)$ and $\mathfrak{A} = \langle\alpha\rangle \times \langle\beta\rangle$. The relevant information for type $D$ quadratic modules is as follows:
<Table Align="ccccc">
<Row>
<Item>$p$</Item>
<Item>$\lambda$</Item>
<Item>$\alpha$</Item>
<Item>$\beta$</Item>
<Item>$\mathfrak{A}_0$</Item>
</Row>
<HorLine/>
<Row>
<Item>$>2$</Item>
<Item>$1$</Item>
<Item>$1$</Item>
<Item>$|\beta| = p-1$</Item>
<Item>$\langle 1 \rangle$</Item>
</Row>
<Row>
<Item>$>2$</Item>
<Item>$>1$</Item>
<Item>$|\alpha| = p^{\lambda-1}$ (e.g. $\alpha = 1 + p$)</Item>
<Item>$|\beta| = p-1$</Item>
<Item>$\langle \alpha \rangle$</Item>
</Row>
<Row>
<Item>$2$</Item>
<Item>$2$</Item>
<Item>$1$</Item>
<Item>$-1$</Item>
<Item>$\langle 1 \rangle$</Item>
</Row>
<Row>
<Item>$2$</Item>
<Item>$>2$</Item>
<Item>$|\alpha| = 2^{\lambda-2}$ (e.g. $\alpha = 5$)</Item>
<Item>$-1$</Item>
<Item>$\langle \alpha \rangle$</Item>
</Row>
</Table>
When $\mathfrak{A}_0$ is trivial, every non-trivial character $\chi \in \widehat{\mathfrak{A}}$ is primitive.
@Subsection Type N
Let $p$ be prime and $\lambda \geq 1$. If $p \neq 2$, let $u$ be a positive integer so that $u \equiv 3$ mod 4 with $-u$ a quadratic non-residue mod $p$; if $p = 2$, let $u=3$. Then the Weil representation arising from the quadratic module with $$M = \mathbb{Z}/p^\lambda\mathbb{Z} \oplus \mathbb{Z}/p^\lambda\mathbb{Z} \qquad \text{and} \qquad Q(x,y) = \frac{x^2 +xy+\frac{1+u}{4}y^2}{p^\lambda}$$ is said to be of type $N$ and denoted $N(p,\lambda)$. Information on type $N$ quadratic modules may be obtained via <Ref Func="SL2ModuleN"/>, and subrepresentations of $N(p,\lambda)$ with level $p^\lambda$ may be constructed via <Ref Func="SL2IrrepN"/>.
The additive group $M$ is a ring with multiplication given by
$$(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 - \frac{1+u}{4}y_1y_2, x_1y_2 + x_2y_1 + y_1y_2)$$
and identity element $(1,0)$. We define a norm $\operatorname{Nm}(x,y) = x^2 + xy + \frac{1+u}{4}y^2$ on $M$; then the multiplicative subgroup
$$\mathfrak{A} = \{\varepsilon \in M^\times \mid \operatorname{Nm}(\varepsilon) = 1 \}$$
of $M^\times$ acts on $M$ by multiplication and is identified with a subgroup of $\operatorname{Aut}(M,Q)$; see <Cite Key="NW76" Where="Section 2.2"/>.
The group $\mathfrak{A}$ has order $p^{\lambda-1}(p+1)$ and $\mathfrak{A} = \langle \alpha \rangle \times \langle \beta \rangle$. The relevant information for type $N$ quadratic modules is as follows:
<Table Align="ccccc">
<Row>
<Item>$p$</Item>
<Item>$\lambda$</Item>
<Item>$\alpha$</Item>
<Item>$\beta$</Item>
<Item>$\mathfrak{A}_0$</Item>
</Row>
<HorLine/>
<Row>
<Item>$>2$</Item>
<Item>$1$</Item>
<Item>$(1,0)$</Item>
<Item>$|\beta| = p+1$</Item>
<Item>$\langle (1,0) \rangle$</Item>
</Row>
<Row>
<Item>$>2$</Item>
<Item>$>1$</Item>
<Item>$|\alpha| = p^{\lambda-1}$</Item>
<Item>$|\beta| = p+1$</Item>
<Item>$\langle \alpha \rangle$</Item>
</Row>
<Row>
<Item>$2$</Item>
<Item>$1$</Item>
<Item>$(1,0)$</Item>
<Item>$|\beta| = 3$</Item>
<Item>$\langle (1,0) \rangle$</Item>
</Row>
<Row>
<Item>$2$</Item>
<Item>$2$</Item>
<Item>$(1,0)$</Item>
<Item>$|\beta| = 6$</Item>
<Item>$\langle (-1,0) \rangle$</Item>
</Row>
<Row>
<Item>$2$</Item>
<Item>$>2$</Item>
<Item>$|\alpha| = p^{\lambda-2}$</Item>
<Item>$|\beta| = 6$</Item>
<Item>$\langle \alpha \rangle$</Item>
</Row>
</Table>
When $\mathfrak{A}_0$ is trivial, every non-trivial character $\chi \in \widehat{\mathfrak{A}}$ is primitive.
@Subsection Type R
@SubsectionTitle Type R, generic cases
The structure of the quadratic module $(M,Q)$ of type $R$ depends upon three additional parameters: $\sigma$, $r$, and $t$. Details are as follows:
<List>
<Item>If $p$ is odd, let $\lambda \geq 2$, $\sigma \in \{1, \dots, \lambda\}$, and $r,t \in \{1,u\}$ with $u$ a quadratic non-residue mod $p$. Then define $$M = \mathbb{Z}/p^\lambda\mathbb{Z} \oplus \mathbb{Z}/p^{\lambda-\sigma}\mathbb{Z} \qquad \text{and} \qquad Q(x,y) = \frac{r(x^2 + p^\sigma t y^2)}{p^\lambda}~.$$
When $\sigma = \lambda$, the second factor of $M$ is trivial, and $(M,Q)$ is said to be in the **unary** family; otherwise, it is called **generic**.</Item>
<Item>If $p=2$, let $\lambda \geq 2$, $\sigma \in \{0, \dots, \lambda-2\}$ and $r,t \in \{1,3,5,7\}$. Then define $$M = \mathbb{Z}/2^{\lambda-1}\mathbb{Z} \oplus \mathbb{Z}/2^{\lambda-\sigma-1}\mathbb{Z} \qquad \text{and} \qquad Q(x,y) = \frac{r(x^2 + 2^\sigma t y^2)}{2^\lambda}~.$$
When $\sigma = \lambda - 2$, the second factor of $M$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$, and $(M,Q)$ is said to be in the **extremal** family; otherwise, it is called **generic**.</Item>
</List>
In all cases, the resulting representation is said to be of type $R$ and denoted $R(p,\lambda,\sigma,r,t)$. The additive group $M$ admits a ring structure with multiplication
$$(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 - p^\sigma ty_1y_2, x_1y_2 + x_2y_1)$$
and identity element $(1,0)$. We define a norm $\operatorname{Nm}(x,y) = x^2 + xy + p^\sigma t y^2$ on $M$.
In this section, we detail generic type $R$ quadratic modules. Information on the unary and extremal cases is covered in Section <Ref Sect="Chapter_Description_Section_Weil_Subsection_Type_R_Special"/>.
Let $(M,Q)$ be a generic type $R$ quadratic module. Information on $(M,Q)$ can be obtained via <Ref Func="SL2ModuleR"/>, and subrepresentations of $R(p,\lambda,\sigma,r,t)$ with level $p^\lambda$ may be constructed via <Ref Func="SL2IrrepR"/>.
The multiplicative subgroup
$$\mathfrak{A} = \{\varepsilon \in M^\times \mid \operatorname{Nm}(\varepsilon) = 1 \}$$
of $M^\times$ acts on $M$ by multiplication and is identified with a subgroup of $\operatorname{Aut}(M,Q)$; see <Cite Key="NW76" Where="Section 2.3 - 2.4"/>. The relevant information is as follows:
<List>
<Item>If $p$ is odd, $\mathfrak{A} = \langle\alpha\rangle \times \langle\beta\rangle$ with order $2p^{\lambda-\sigma}$. In this case, for fixed $p$, $\lambda$, $\sigma$, each pair $(r,t)$ gives rise to a distinct quadratic module <Cite Key="Nobs1" Where="Satz 4"/>. The following table covers a complete list of representatives of equivalence classes of such modules.
<Table Align="ccccccc">
<Row>
<Item>$p$</Item>
<Item>$\lambda$</Item>
<Item>$\sigma$</Item>
<Item>$(r,t)$</Item>
<Item>$\alpha$</Item>
<Item>$\beta$</Item>
<Item>$\mathfrak{A}_0$</Item>
</Row>
<HorLine/>
<Row>
<Item>$3$</Item>
<Item>$2$</Item>
<Item>$1$</Item>
<Item>$r,t \in \{1,2\}$</Item>
<Item>$|\alpha| = 3$</Item>
<Item>$(-1,0)$</Item>
<Item>$\langle \alpha \rangle$</Item>
</Row>
<Row>
<Item>$3$</Item>
<Item>$\geq 3$</Item>
<Item>$1$</Item>
<Item>$t=1$, $r \in \{1,2\}$</Item>
<Item>$|\alpha| = 3^{\lambda-\sigma-1}$</Item>
<Item>$|\beta| = 6$</Item>
<Item>$\langle \alpha \rangle$</Item>
</Row>
<Row>
<Item>$3$</Item>
<Item>$\geq 3$</Item>
<Item>$1$</Item>
<Item>$t=2$, $r \in \{1,2\}$</Item>
<Item>$|\alpha| = 3^{\lambda-\sigma}$</Item>
<Item>$(-1,0)$</Item>
<Item>$\langle \alpha \rangle$</Item>
</Row>
<Row>
<Item>$3$</Item>
<Item>$\geq 3$</Item>
<Item>$2,\dots,\lambda-1$</Item>
<Item>$r,t \in \{1,2\}$</Item>
<Item>$|\alpha| = 3^{\lambda-\sigma}$</Item>
<Item>$(-1,0)$</Item>
<Item>$\langle \alpha \rangle$</Item>
</Row>
<Row>
<Item>$\geq 5$</Item>
<Item>$\geq 2$</Item>
<Item>$1, \dots,\lambda - 1$</Item>
<Item>$r,t \in \{1,u\}$</Item>
<Item>$|\alpha| = p^{\lambda-\sigma}$</Item>
<Item>$(-1,0)$</Item>
<Item>$\langle \alpha \rangle$</Item>
</Row>
</Table></Item>
<Item>If $p=2$, then the generic case occurs when $\lambda \geq 3$ and $\sigma \in \{0,\dots,\lambda-3\}$. Again, $\mathfrak{A} = \langle\alpha\rangle \times \langle\beta\rangle$; the order is $2^{\lambda-\sigma-k}$ with $k \in \{0,1,2\}$ (as specified below). In this case, for fixed $p$, $\lambda$, $\sigma$, two pairs $(r_1,t_1)$ and $(r_2,t_2)$ may give rise to equivalent quadratic modules <Cite Key="Nobs1" Where="Satz 4"/>. The following table covers a complete list of representatives of equivalence classes of such modules.
<Table Align="ccccccc">
<Row>
<Item>$\lambda$</Item>
<Item>$\sigma$</Item>
<Item>$r$</Item>
<Item>$t$</Item>
<Item>$\alpha = (x,y)$</Item>
<Item>$\beta$</Item>
<Item>$\mathfrak{A}_0$</Item>
</Row>
<HorLine/>
<Row>
<Item>$3$</Item>
<Item>$0$</Item>
<Item>$1,3$</Item>
<Item>$1,5$</Item>
<Item>$(1,0)$</Item>
<Item>$(\frac{t-1}{2},1)$</Item>
<Item>$\langle (-1,0) \rangle$</Item>
</Row>
<Row>
<Item>$3$</Item>
<Item>$0$</Item>
<Item>$1$</Item>
<Item>$3,7$</Item>
<Item>$(1,0)$</Item>
<Item>$(-1,0)$</Item>
<Item>$\langle (-1,0) \rangle$</Item>
</Row>
<Row>
<Item>$4$</Item>
<Item>$0$</Item>
<Item>$1,3$</Item>
<Item>$5$</Item>
<Item>$x=2, y \equiv 3 \operatorname{mod} 4, |\alpha| = 2^{\lambda-2}$</Item>
<Item>$(-1,0)$</Item>
<Item>$\langle -\alpha^2 \rangle$</Item>
</Row>
<Row>
<Item>$\geq 4$</Item>
<Item>$0$</Item>
<Item>$1,3$</Item>
<Item>$1$</Item>
<Item>$x \equiv 1 \operatorname{mod} 4, y = 4, |\alpha| = 2^{\lambda-3}$</Item>
<Item>$(0,1)$</Item>
<Item>$\langle \alpha \rangle$</Item>
</Row>
<Row>
<Item>$\geq 4$</Item>
<Item>$0$</Item>
<Item>$1$</Item>
<Item>$3,7$</Item>
<Item>$x \equiv 1 \operatorname{mod} 4, y = 4, |\alpha| = 2^{\lambda-3}$</Item>
<Item>$(-1,0)$</Item>
<Item>$\langle \alpha \rangle$</Item>
</Row>
<Row>
<Item>$\geq 5$</Item>
<Item>$0$</Item>
<Item>$1,3$</Item>
<Item>$5$</Item>
<Item>$x=2, y \equiv 3 \operatorname{mod} 4, |\alpha| = 2^{\lambda-2}$</Item>
<Item>$(-1,0)$</Item>
<Item>$\langle \alpha \rangle$</Item>
</Row>
<Row>
<Item>$\geq 3$</Item>
<Item>$1,2$</Item>
<Item>$1,3,5,7$</Item>
<Item>$1,3,5,7$</Item>
<Item>$x\equiv 1 \operatorname{mod} 4, y=2, |\alpha| = 2^{\lambda-\sigma-2}$</Item>
<Item>$(-1,0)$</Item>
<Item>$\langle \alpha \rangle$</Item>
</Row>
<Row>
<Item>$\geq 3$</Item>
<Item>$\geq 3$</Item>
<Item>$1,3,5,7$</Item>
<Item>$1,3,5,7$</Item>
<Item>$x\equiv 1 \operatorname{mod} 4, y=1, |\alpha| = 2^{\lambda-\sigma-1}$</Item>
<Item>$(-1,0)$</Item>
<Item>$\langle \alpha \rangle$</Item>
</Row>
</Table></Item>
</List>
@Subsection Type R Special
@SubsectionTitle Type R, unary and extremal cases
This section covers the unary and extremal cases of type $R$.
First, in the unary family, we have $p$ odd and $\sigma = \lambda$. Then the second factor of $M$ is trivial (and hence $t$ is irrelevant). We then denote $R_{p^\lambda}(r) = R(p,\lambda,\lambda,r,t)$. In this case, we do not decompose $W(M,Q)$ using characters: instead, if $\lambda \leq 2$, then $W(M,Q)$ contains two distinct irreducible subrepresentations of level $p^\lambda$, denoted $R_{p^\lambda}(r)_{\pm}$; otherwise, it contains a single such subrepresentation, denoted $R_{p^\lambda}(r)_1$. The unary family is handled by <Ref Func="SL2IrrepRUnary"/> (which is called by <Ref Func="SL2IrrepR"/> when appropriate).
Second, in the extremal family, we have $p=2$, $\lambda \geq 2$, and $\sigma = \lambda - 2$. Then the second factor of $M$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$, and collapses in $2M$. Here, $\operatorname{Aut}(M,Q)$ is itself abelian, so we let $\mathfrak{A} = \operatorname{Aut}(M,Q)$. This group has order 1, 2, or 4, with the following structure:
<List>
<Item>For $\lambda = 2$ and $t=1$, $\mathfrak{A} = \langle \tau \rangle$ where $\tau : (x,y) \mapsto (y,x)$, and $\mathfrak{A}_0 = \mathfrak{A} = \langle\tau\rangle$.</Item>
<Item>For $\lambda = 2$ and $t = 3$, $\mathfrak{A}$ is trivial; there are no primitive characters.</Item>
<Item>For $\lambda = 3$ or $4$, $\mathfrak{A} = \{\pm 1\}$ acting on $M$ by multiplication; there are no primitive characters.</Item>
<Item>Finally, for $\lambda \geq 5$, $\mathfrak{A} = \operatorname{Aut}(M,Q) = \langle \alpha \rangle \times \langle -1 \rangle$ with $\alpha$ of order 2, and $\mathfrak{A}_0 = \langle\alpha\rangle$. Note that, for this special case, the usual test for primitivity (described in Section <Ref Sect="Chapter_Description_Section_Construction"/>) fails, as there are no elements of $\mathfrak{A}$ fixing $2M$ pointwise.</Item>
</List>
The extremal family is handled by <Ref Func="SL2ModuleR"/> and <Ref Func="SL2IrrepR"/>, just like the generic case.
@Chapter Irreps
@Chapter Lists
@Chapter Testing