-
Notifications
You must be signed in to change notification settings - Fork 1
/
create_db_utkface.py
46 lines (37 loc) · 1.55 KB
/
create_db_utkface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import argparse
from pathlib import Path
from tqdm import tqdm
import numpy as np
import scipy.io
import cv2
def get_args():
parser = argparse.ArgumentParser(description="This script creates database for training from the UTKFace dataset.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--input", "-i", type=str, required=True,
help="path to the UTKFace image directory")
parser.add_argument("--output", "-o", type=str, required=True,
help="path to output database mat file")
parser.add_argument("--img_size", type=int, default=64,
help="output image size")
args = parser.parse_args()
return args
def main():
args = get_args()
image_dir = Path(args.input)
output_path = args.output
img_size = args.img_size
out_genders = []
out_ages = []
out_imgs = []
for i, image_path in enumerate(tqdm(image_dir.glob("*.jpg"))):
image_name = image_path.name # [age]_[gender]_[race]_[date&time].jpg
age, gender = image_name.split("_")[:2]
out_genders.append(int(gender))
out_ages.append(min(int(age), 100))
img = cv2.imread(str(image_path))
out_imgs.append(cv2.resize(img, (img_size, img_size)))
output = {"image": np.array(out_imgs), "gender": np.array(out_genders), "age": np.array(out_ages),
"db": "utk", "img_size": img_size, "min_score": -1}
scipy.io.savemat(output_path, output)
if __name__ == '__main__':
main()