-
Notifications
You must be signed in to change notification settings - Fork 0
/
chatbot.py
439 lines (374 loc) · 22.8 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# -*- coding: utf-8 -*-
"""
Created on Fri Jan 4 14:54:52 2019
@author: slacki
"""
#Using Python 3.5 which allows tensorflow work
#Building a Chatbot with deep NLP
import numpy as np
import tensorflow as tf
import re
import time
### Part 1 - Data Preprocessing
#importing dataset
lines = open('movie_lines.txt', encoding = 'utf-8', errors = 'ignore').read().split('\n')
conversations = open('movie_conversations.txt', encoding = 'utf-8', errors = 'ignore').read().split('\n')
#Creating a dicitonary that maps each line and its id
id2line = {}
for line in lines:
_line = line.split(' +++$+++ ') #_line means that this is a local variable
id2line[_line[0]] = _line[len(_line)-1] #Take first and last string from the lines array and map to eachother
#I'm not sure why he used this logic rather than the one I did above
# if len(_line) == 5:
# id2line[_line[0]] = _line[4]
#Creating a list of all of the conversations
conversations_ids = []
for conversation in conversations[:-1]:
_conversation = conversation.split(' +++$+++ ')[-1][1:-1].replace("'","").replace(" ", "") #This is a weird way of just choosing the first and last element from the list
conversations_ids.append(_conversation.split(','))
# Getting the questions and answers separately
questions = []
answers = []
for conversation in conversations_ids:
for i in range(len(conversation) - 1):
questions.append(id2line[conversation[i]])
answers.append(id2line[conversation[i + 1]])
#Doing a first cleaning of the texts. Consider not including . ? ,
def clean_text(text):
text = text.lower()
text = re.sub(r"i'm", "i am", text)
text = re.sub(r"he's", "he is", text)
text = re.sub(r"she's", "she is", text)
text = re.sub(r"that's", "that is", text)
text = re.sub(r"what's", "what is", text)
text = re.sub(r"where's", "where is", text)
text = re.sub(r"\'ll", " will", text)
text = re.sub(r"\'ve", " have", text)
text = re.sub(r"\'re", " are", text)
text = re.sub(r"\'d", " would", text)
text = re.sub(r"won't", "will not", text)
text = re.sub(r"can't", "cannot", text)
text = re.sub(r"[-()\"#/@;<>{}+=~|.?,)]", "", text)
return text
#Cleaning the questions, did differently than in the video
clean_questions = []
for question in questions:
_cleaned1 = clean_text(question)
clean_questions.append(_cleaned1)
#Cleaning the answers
clean_answers = []
for answer in answers:
_cleaned2 = clean_text(answer)
clean_answers.append(_cleaned2)
#Creating a dictionary that maps each word to its number of occurences
#Mind that the numbers are different than in the video. If the bot doesn't work in the end, it will be worth reviewing my code
word2count = {}
for question in clean_questions:
for word in question.split():
if word not in word2count:
word2count[word] = 1
else:
word2count[word] += 1
for answer in clean_answers:
for word in answer.split():
if word not in word2count:
word2count[word] = 1
else:
word2count[word] += 1
#Creating two dictionaries that map the questions words and the answers words to a unique integer. Genius. Every word has a number
treshold = 20
questionswords2int = {}
word_number = 0
for word, count in word2count.items(): #.items() is used to do things with dictionaries innit
if count >= treshold:
questionswords2int[word] = word_number
word_number += 1
answerswords2int = {}
word_number = 0
for word, count in word2count.items(): #.items() is used to do things with dictionaries innit
if count >= treshold:
answerswords2int[word] = word_number
word_number += 1
#Adding the last tokens to these two dictionaries
tokens = ['<PAD>','<EOS>', '<OUT>', '<SOS>']
for token in tokens:
questionswords2int[token] = len(questionswords2int) + 1
for token in tokens:
answerswords2int[token] = len(answerswords2int) + 1
#Creating the inverse dictionary of the answers2wordsint dictionary
answerints2word = {w_i: w for w, w_i in answerswords2int.items()}
#Adding the End of String (EOS) token to the end of every answer
for i in range(len(clean_answers)):
clean_answers[i] += ' <EOS>'
#Translating all the questions and the answers into integers
# and replacing all words that were filtered out by <OUT>
questions_to_int = []
for question in clean_questions:
ints = []
for word in question.split():
if word not in questionswords2int:
ints.append(questionswords2int['<OUT>']) #takes from the inverse dictionary
else:
ints.append(questionswords2int[word])
questions_to_int.append(ints)
answers_to_int = []
for answer in clean_answers:
ints = []
for word in answer.split():
if word not in answerswords2int:
ints.append(answerswords2int['<OUT>']) #takes from the inverse dictionary
else:
ints.append(answerswords2int[word])
answers_to_int.append(ints)
#Sorting questions and answers by the length of questions because that reduces loss or something. And makes things more efficient
sorted_cleaned_questions = []
sorted_cleaned_answers = []
for length in range(1, 25 + 1):
for i in enumerate(questions_to_int):
if len(i[1]) == length:
sorted_cleaned_questions.append(questions_to_int[i[0]])
sorted_cleaned_answers.append(answers_to_int[i[0]])
########### PART 2 - BUILDING SEQ2SEQ MODEL #####################
# Creatin gplaceholders for the inputs and the targets
def model_inputs():
inputs = tf.placeholder(tf.int32, [None, None], name = 'input')
targets = tf.placeholder(tf.int32, [None, None], name = 'target')
lr = tf.placeholder(tf.float32, name = 'learning_rate')
keep_prob = tf.placeholder(tf.float32, name = 'keep_prob')
return inputs, targets, lr, keep_prob
# Preprocessing the targets
def preprocess_targets(targets, word2int, batch_size):
left_side = tf.fill([batch_size, 1], word2int['<SOS>'])
right_side = tf.strided_slice(targets, [0,0], [batch_size, -1], [1,1])
preprocessed_targets = tf.concat([left_side, right_side], 1)
return preprocessed_targets
#Creating the Encoder RNN Layer
def encoder_rnn(rnn_inputs, rnn_size, num_layers, keep_prob, sequence_length):
lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)
lstm_dropout = tf.contrib.rnn.DropoutWrapper(lstm, input_keep_prob = keep_prob)
encoder_cell = tf.contrib.rnn.MultiRNNCell([lstm_dropout] * num_layers)
encoder_output, encoder_state = tf.nn.bidirectional_dynamic_rnn(cell_fw = encoder_cell,
cell_bw = encoder_cell,
sequence_length = sequence_length,
inputs = rnn_inputs,
dtype = tf.float32)
return encoder_state
#Decoding the training set
def decode_training_set(encoder_state, decoder_cell, decoder_embedded_input, sequence_length, decoding_scope, output_function, keep_prob, batch_size):
attention_states = tf.zeros([batch_size, 1, decoder_cell.output_size])
attention_keys, attention_values, attention_score_function, attention_construct_function = tf.contrib.seq2seq.prepare_attention(attention_states, attention_option = 'bahdanau', num_units = decoder_cell.output_size)
training_decoder_function = tf.contrib.seq2seq.attention_decoder_fn_train(encoder_state[0],
attention_keys,
attention_values,
attention_score_function,
attention_construct_function,
name = 'attn_dec_train')
decoder_output, decoder_final_state, decoder_final_context_state = tf.contrib.seq2seq.dynamic_rnn_decoder(decoder_cell,
training_decoder_function,
decoder_embedded_input,
sequence_length,
scope = decoding_scope)
decoder_output_dropout = tf.nn.dropout(decoder_output, keep_prob)
return output_function(decoder_output_dropout)
# Decoding the test/validation set
def decode_test_set(encoder_state, decoder_cell, decoder_embeddings_matrix, sos_id, eos_id, maximum_length, num_words, decoding_scope, output_function, keep_prob, batch_size):
attention_states = tf.zeros([batch_size, 1, decoder_cell.output_size])
attention_keys, attention_values, attention_score_function, attention_construct_function = tf.contrib.seq2seq.prepare_attention(attention_states, attention_option = "bahdanau", num_units = decoder_cell.output_size)
test_decoder_function = tf.contrib.seq2seq.attention_decoder_fn_inference(output_function,
encoder_state[0],
attention_keys,
attention_values,
attention_score_function,
attention_construct_function,
decoder_embeddings_matrix,
sos_id,
eos_id,
maximum_length,
num_words,
name = "attn_dec_inf")
test_predictions, decoder_final_state, decoder_final_context_state = tf.contrib.seq2seq.dynamic_rnn_decoder(decoder_cell,
test_decoder_function,
scope = decoding_scope)
return test_predictions
# Creating the Decoder RNN
def decoder_rnn(decoder_embedded_input, decoder_embeddings_matrix, encoder_state, num_words, sequence_length, rnn_size, num_layers, word2int, keep_prob, batch_size):
with tf.variable_scope("decoding") as decoding_scope:
lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)
lstm_dropout = tf.contrib.rnn.DropoutWrapper(lstm, input_keep_prob = keep_prob)
decoder_cell = tf.contrib.rnn.MultiRNNCell([lstm_dropout] * num_layers)
weights = tf.truncated_normal_initializer(stddev = 0.1)
biases = tf.zeros_initializer()
output_function = lambda x: tf.contrib.layers.fully_connected(x,
num_words,
None,
scope = decoding_scope,
weights_initializer = weights,
biases_initializer = biases)
training_predictions = decode_training_set(encoder_state,
decoder_cell,
decoder_embedded_input,
sequence_length,
decoding_scope,
output_function,
keep_prob,
batch_size)
decoding_scope.reuse_variables()
test_predictions = decode_test_set(encoder_state,
decoder_cell,
decoder_embeddings_matrix,
word2int['<SOS>'],
word2int['<EOS>'],
sequence_length - 1,
num_words,
decoding_scope,
output_function,
keep_prob,
batch_size)
return training_predictions, test_predictions
# Building the seq2seq model
def seq2seq_model(inputs, targets, keep_prob, batch_size, sequence_length, answers_num_words, questions_num_words, encoder_embedding_size, decoder_embedding_size, rnn_size, num_layers, questionswords2int):
encoder_embedded_input = tf.contrib.layers.embed_sequence(inputs,
answers_num_words + 1,
encoder_embedding_size,
initializer = tf.random_uniform_initializer(0, 1))
encoder_state = encoder_rnn(encoder_embedded_input, rnn_size, num_layers, keep_prob, sequence_length)
preprocessed_targets = preprocess_targets(targets, questionswords2int, batch_size)
decoder_embeddings_matrix = tf.Variable(tf.random_uniform([questions_num_words + 1, decoder_embedding_size], 0, 1))
decoder_embedded_input = tf.nn.embedding_lookup(decoder_embeddings_matrix, preprocessed_targets)
training_predictions, test_predictions = decoder_rnn(decoder_embedded_input,
decoder_embeddings_matrix,
encoder_state,
questions_num_words,
sequence_length,
rnn_size,
num_layers,
questionswords2int,
keep_prob,
batch_size)
return training_predictions, test_predictions
################ Part 3 - training the seq2seq model #########
# Setting the Hyperparameters
epochs = 100 #setting the number of batches which affects speed of calculation
batch_size = 64
rnn_size = 512
num_layers = 3
encoding_embedding_size = 512
decoding_embedding_size = 512
learning_rate = 0.01
learning_rate_decay = 0.9
min_learning_rate = 0.0001
keep_probability = 0.5
# Defining a session
tf.reset_default_graph()
session = tf.InteractiveSession()
# Loading the model inputs
inputs, targets, lr, keep_prob = model_inputs()
# Setting the sequence length
sequence_length = tf.placeholder_with_default(25, None, name = 'sequence_length')
# Getting the shape of the inputs tensor
input_shape = tf.shape(inputs)
# Getting the training and test predictions
training_predictions, test_predictions = seq2seq_model(tf.reverse(inputs, [-1]),
targets,
keep_prob,
batch_size,
sequence_length,
len(answerswords2int),
len(questionswords2int),
encoding_embedding_size,
decoding_embedding_size,
rnn_size,
num_layers,
questionswords2int)
# Setting up the loss error, the optimiser and gradient clipping
with tf.name_scope("optimization"):
loss_error = tf.contrib.seq2seq.sequence_loss(training_predictions,
targets,
tf.ones([input_shape[0], sequence_length]))
optimizer = tf.train.AdamOptimizer(learning_rate)
gradients = optimizer.compute_gradients(loss_error)
clipped_gradients = [(tf.clip_by_value(grad_tensor, -5., 5.), grad_variable) for grad_tensor, grad_variable in gradients if grad_tensor is not None]
optimizer_gradient_clipping = optimizer.apply_gradients(clipped_gradients)
# Padding the sequences with the <PAD> token
# Question (who, are, you)
#Answer : (<SOS>, I, am, a, bot, ., <EOS>
#this requires the question to have adding such as (who, are, you, <PAD>, <PAD>, <PAD>)
# Now input has the same lenght as the output
def apply_padding(batch_of_sequences, word2int):
max_sequence_length = max([len(sequence) for sequence in batch_of_sequences])
return [sequence + [word2int['<PAD>']] * (max_sequence_length - len(sequence)) for sequence in batch_of_sequences]
# Splitting the data into batches of questions and answers
def split_into_batches(questions, answers, batch_size):
for batch_index in range(0, len(questions) // batch_size):
start_index = batch_index * batch_size
questions_in_batch = questions[start_index : start_index + batch_size]
answers_in_batch = answers[start_index : start_index + batch_size]
padded_questions_in_batch = np.array(apply_padding(questions_in_batch, questionswords2int))
padded_answers_in_batch = np.array(apply_padding(answers_in_batch, answerswords2int))
yield padded_questions_in_batch, padded_answers_in_batch
# Splitting the questions and answers into training and validation sets
training_validation_split = int(len(sorted_cleaned_questions) * 0.15)
training_questions = sorted_cleaned_questions[training_validation_split:]
training_answers = sorted_cleaned_answers[training_validation_split:]
validation_questions = sorted_cleaned_questions[:training_validation_split]
validation_answers = sorted_cleaned_answers[:training_validation_split]
# TRAAAINING
batch_index_check_training_loss = 100
batch_index_check_validation_loss = ((len(training_questions)) // batch_size // 2) - 1
total_training_loss_error = 0
list_validation_loss_error = []
early_stopping_check = 0
early_stopping_stop = 1000
checkpoint = "chatbot_weights.ckpt"
session.run(tf.global_variables_initializer())
for epoch in range(1, epochs + 1):
for batch_index, (padded_questions_in_batch, padded_answers_in_batch) in enumerate(split_into_batches(training_questions, training_answers, batch_size)):
starting_time = time.time()
_, batch_training_loss_error = session.run([optimizer_gradient_clipping, loss_error], {inputs: padded_questions_in_batch,
targets: padded_answers_in_batch,
lr: learning_rate,
sequence_length: padded_answers_in_batch.shape[1],
keep_prob: keep_probability})
total_training_loss_error += batch_training_loss_error
ending_time = time.time()
batch_time = ending_time - starting_time
if batch_index % batch_index_check_training_loss == 0:
print('Epoch: {:>3}/{}, Batch: {:>4}/{}, Training Loss Error: {:>6.3f}, Training Time on 100 Batches: {:d} seconds'.format(epoch,
epochs,
batch_index,
len(training_questions) // batch_size,
total_training_loss_error / batch_index_check_training_loss,
int(batch_time * batch_index_check_training_loss)))
total_training_loss_error = 0
if batch_index % batch_index_check_validation_loss == 0 and batch_index > 0:
total_validation_loss_error = 0
starting_time = time.time()
for batch_index_validation, (padded_questions_in_batch, padded_answers_in_batch) in enumerate(split_into_batches(validation_questions, validation_answers, batch_size)):
batch_validation_loss_error = session.run(loss_error, {inputs: padded_questions_in_batch,
targets: padded_answers_in_batch,
lr: learning_rate,
sequence_length: padded_answers_in_batch.shape[1],
keep_prob: 1})
total_validation_loss_error += batch_validation_loss_error
ending_time = time.time()
batch_time = ending_time - starting_time
average_validation_loss_error = total_validation_loss_error / (len(validation_questions) / batch_size)
print('Validation Loss Error: {:>6.3f}, Batch Validation Time: {:d} seconds'.format(average_validation_loss_error, int(batch_time)))
learning_rate *= learning_rate_decay
if learning_rate < min_learning_rate:
learning_rate = min_learning_rate
list_validation_loss_error.append(average_validation_loss_error)
if average_validation_loss_error <= min(list_validation_loss_error):
print('I speak better now!!')
early_stopping_check = 0
saver = tf.train.Saver()
saver.save(session, checkpoint)
else:
print("Sorry I do not speak better, I need to practice more")
early_stopping_check += 1
if early_stopping_check == early_stopping_stop:
break
if early_stopping_check == early_stopping_stop:
print("My apologies, I cannot speak better anymore. This is the best I can do")
break
print("Game over")