The following NVIDIA modules needs to be loaded, so add this to the talos config:
machine:
kernel:
modules:
- name: nvidia
- name: nvidia_uvm
- name: nvidia_drm
- name: nvidia_modeset
nvidia-container-cli
loads BPF programs and requires relaxed KSPP setting for bpf_jit_harden, so Talos default setting
should be overridden:
machine:
sysctls:
net.core.bpf_jit_harden: 1
Warning! This disables KSPP best practices setting.
Apply the following manifest to create a runtime class that uses the extension:
---
apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
name: nvidia
handler: nvidia
Install the NVIDIA device plugin:
helm repo add nvdp https://nvidia.github.io/k8s-device-plugin
helm repo update
helm install nvidia-device-plugin nvdp/nvidia-device-plugin --version=0.14.1 --set=runtimeClassName=nvidia
Apply the following manifest to run CUDA pod via nvidia runtime:
---
apiVersion: v1
kind: Pod
metadata:
name: gpu-operator-test
spec:
restartPolicy: OnFailure
runtimeClassName: nvidia
containers:
- name: cuda-vector-add
image: "nvidia/samples:vectoradd-cuda11.6.0"
resources:
limits:
nvidia.com/gpu: 1
The status can be viewed by running:
❯ kubectl get pods
NAME READY STATUS RESTARTS AGE
gpu-operator-test 0/1 Completed 0 13s
❯ kubectl logs gpu-operator-test
[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED
Done