forked from aws/amazon-sagemaker-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist.py
159 lines (120 loc) · 5.63 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import argparse
import gzip
import json
import logging
import os
import struct
import mxnet as mx
import numpy as np
def load_data(path):
with gzip.open(find_file(path, "labels.gz")) as flbl:
struct.unpack(">II", flbl.read(8))
labels = np.fromstring(flbl.read(), dtype=np.int8)
with gzip.open(find_file(path, "images.gz")) as fimg:
_, _, rows, cols = struct.unpack(">IIII", fimg.read(16))
images = np.fromstring(fimg.read(), dtype=np.uint8).reshape(len(labels), rows, cols)
images = images.reshape(images.shape[0], 1, 28, 28).astype(np.float32) / 255
return labels, images
def find_file(root_path, file_name):
for root, dirs, files in os.walk(root_path):
if file_name in files:
return os.path.join(root, file_name)
def build_graph():
data = mx.sym.var('data')
data = mx.sym.flatten(data=data)
fc1 = mx.sym.FullyConnected(data=data, num_hidden=128)
act1 = mx.sym.Activation(data=fc1, act_type="relu")
fc2 = mx.sym.FullyConnected(data=act1, num_hidden=64)
act2 = mx.sym.Activation(data=fc2, act_type="relu")
fc3 = mx.sym.FullyConnected(data=act2, num_hidden=10)
return mx.sym.SoftmaxOutput(data=fc3, name='softmax')
def get_training_context(num_gpus):
if num_gpus:
return [mx.gpu(i) for i in range(num_gpus)]
else:
return mx.cpu()
def train(batch_size, epochs, learning_rate, num_gpus, training_channel, testing_channel,
hosts, current_host, model_dir):
(train_labels, train_images) = load_data(training_channel)
(test_labels, test_images) = load_data(testing_channel)
CHECKPOINTS_DIR = '/opt/ml/checkpoints'
checkpoints_enabled = os.path.exists(CHECKPOINTS_DIR)
# Data parallel training - shard the data so each host
# only trains on a subset of the total data.
shard_size = len(train_images) // len(hosts)
for i, host in enumerate(hosts):
if host == current_host:
start = shard_size * i
end = start + shard_size
break
train_iter = mx.io.NDArrayIter(train_images[start:end], train_labels[start:end], batch_size,
shuffle=True)
val_iter = mx.io.NDArrayIter(test_images, test_labels, batch_size)
logging.getLogger().setLevel(logging.DEBUG)
kvstore = 'local' if len(hosts) == 1 else 'dist_sync'
mlp_model = mx.mod.Module(symbol=build_graph(),
context=get_training_context(num_gpus))
checkpoint_callback = None
if checkpoints_enabled:
# Create a checkpoint callback that checkpoints the model params and the optimizer state after every epoch at the given path.
checkpoint_callback = mx.callback.module_checkpoint(mlp_model,
CHECKPOINTS_DIR + "/mnist",
period=1,
save_optimizer_states=True)
mlp_model.fit(train_iter,
eval_data=val_iter,
kvstore=kvstore,
optimizer='sgd',
optimizer_params={'learning_rate': learning_rate},
eval_metric='acc',
epoch_end_callback = checkpoint_callback,
batch_end_callback=mx.callback.Speedometer(batch_size, 100),
num_epoch=epochs)
if current_host == hosts[0]:
save(model_dir, mlp_model)
def save(model_dir, model):
model.symbol.save(os.path.join(model_dir, 'model-symbol.json'))
model.save_params(os.path.join(model_dir, 'model-0000.params'))
signature = [{'name': data_desc.name, 'shape': [dim for dim in data_desc.shape]}
for data_desc in model.data_shapes]
with open(os.path.join(model_dir, 'model-shapes.json'), 'w') as f:
json.dump(signature, f)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--batch-size', type=int, default=100)
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--learning-rate', type=float, default=0.1)
parser.add_argument('--model-dir', type=str, default=os.environ['SM_MODEL_DIR'])
parser.add_argument('--train', type=str, default=os.environ['SM_CHANNEL_TRAIN'])
parser.add_argument('--test', type=str, default=os.environ['SM_CHANNEL_TEST'])
parser.add_argument('--current-host', type=str, default=os.environ['SM_CURRENT_HOST'])
parser.add_argument('--hosts', type=list, default=json.loads(os.environ['SM_HOSTS']))
return parser.parse_args()
### NOTE: this function cannot use MXNet
def neo_preprocess(payload, content_type):
import logging
import numpy as np
import io
logging.info('Invoking user-defined pre-processing function')
if content_type != 'application/vnd+python.numpy+binary':
raise RuntimeError('Content type must be application/vnd+python.numpy+binary')
f = io.BytesIO(payload)
return np.load(f)
### NOTE: this function cannot use MXNet
def neo_postprocess(result):
import logging
import numpy as np
import json
logging.info('Invoking user-defined post-processing function')
# Softmax (assumes batch size 1)
result = np.squeeze(result)
result_exp = np.exp(result - np.max(result))
result = result_exp / np.sum(result_exp)
response_body = json.dumps(result.tolist())
content_type = 'application/json'
return response_body, content_type
if __name__ == '__main__':
args = parse_args()
num_gpus = int(os.environ['SM_NUM_GPUS'])
train(args.batch_size, args.epochs, args.learning_rate, num_gpus, args.train, args.test,
args.hosts, args.current_host, args.model_dir)