-
Notifications
You must be signed in to change notification settings - Fork 953
/
Copy pathmodel.py
137 lines (115 loc) · 5.51 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import tensorflow as tf
from tensorflow.contrib import rnn
from tensorflow.contrib import legacy_seq2seq
import numpy as np
class Model():
def __init__(self, args, training=True):
self.args = args
if not training:
args.batch_size = 1
args.seq_length = 1
# choose different rnn cell
if args.model == 'rnn':
cell_fn = rnn.RNNCell
elif args.model == 'gru':
cell_fn = rnn.GRUCell
elif args.model == 'lstm':
cell_fn = rnn.LSTMCell
elif args.model == 'nas':
cell_fn = rnn.NASCell
else:
raise Exception("model type not supported: {}".format(args.model))
# warp multi layered rnn cell into one cell with dropout
cells = []
for _ in range(args.num_layers):
cell = cell_fn(args.rnn_size)
if training and (args.output_keep_prob < 1.0 or args.input_keep_prob < 1.0):
cell = rnn.DropoutWrapper(cell,
input_keep_prob=args.input_keep_prob,
output_keep_prob=args.output_keep_prob)
cells.append(cell)
self.cell = cell = rnn.MultiRNNCell(cells, state_is_tuple=True)
# input/target data (int32 since input is char-level)
self.input_data = tf.placeholder(
tf.int32, [args.batch_size, args.seq_length])
self.targets = tf.placeholder(
tf.int32, [args.batch_size, args.seq_length])
self.initial_state = cell.zero_state(args.batch_size, tf.float32)
# softmax output layer, use softmax to classify
with tf.variable_scope('rnnlm'):
softmax_w = tf.get_variable("softmax_w",
[args.rnn_size, args.vocab_size])
softmax_b = tf.get_variable("softmax_b", [args.vocab_size])
# transform input to embedding
embedding = tf.get_variable("embedding", [args.vocab_size, args.rnn_size])
inputs = tf.nn.embedding_lookup(embedding, self.input_data)
# dropout beta testing: double check which one should affect next line
if training and args.output_keep_prob:
inputs = tf.nn.dropout(inputs, args.output_keep_prob)
# unstack the input to fits in rnn model
inputs = tf.split(inputs, args.seq_length, 1)
inputs = [tf.squeeze(input_, [1]) for input_ in inputs]
# loop function for rnn_decoder, which take the previous i-th cell's output and generate the (i+1)-th cell's input
def loop(prev, _):
prev = tf.matmul(prev, softmax_w) + softmax_b
prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
return tf.nn.embedding_lookup(embedding, prev_symbol)
# rnn_decoder to generate the ouputs and final state. When we are not training the model, we use the loop function.
outputs, last_state = legacy_seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop if not training else None, scope='rnnlm')
output = tf.reshape(tf.concat(outputs, 1), [-1, args.rnn_size])
# output layer
self.logits = tf.matmul(output, softmax_w) + softmax_b
self.probs = tf.nn.softmax(self.logits)
# loss is calculate by the log loss and taking the average.
loss = legacy_seq2seq.sequence_loss_by_example(
[self.logits],
[tf.reshape(self.targets, [-1])],
[tf.ones([args.batch_size * args.seq_length])])
with tf.name_scope('cost'):
self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length
self.final_state = last_state
self.lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
# calculate gradients
grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
args.grad_clip)
with tf.name_scope('optimizer'):
optimizer = tf.train.AdamOptimizer(self.lr)
# apply gradient change to the all the trainable variable.
self.train_op = optimizer.apply_gradients(zip(grads, tvars))
# instrument tensorboard
tf.summary.histogram('logits', self.logits)
tf.summary.histogram('loss', loss)
tf.summary.scalar('train_loss', self.cost)
def sample(self, sess, chars, vocab, num=200, prime='The ', sampling_type=1):
state = sess.run(self.cell.zero_state(1, tf.float32))
for char in prime[:-1]:
x = np.zeros((1, 1))
x[0, 0] = vocab[char]
feed = {self.input_data: x, self.initial_state: state}
[state] = sess.run([self.final_state], feed)
def weighted_pick(weights):
t = np.cumsum(weights)
s = np.sum(weights)
return(int(np.searchsorted(t, np.random.rand(1)*s)))
ret = prime
char = prime[-1]
for _ in range(num):
x = np.zeros((1, 1))
x[0, 0] = vocab[char]
feed = {self.input_data: x, self.initial_state: state}
[probs, state] = sess.run([self.probs, self.final_state], feed)
p = probs[0]
if sampling_type == 0:
sample = np.argmax(p)
elif sampling_type == 2:
if char == ' ':
sample = weighted_pick(p)
else:
sample = np.argmax(p)
else: # sampling_type == 1 default:
sample = weighted_pick(p)
pred = chars[sample]
ret += pred
char = pred
return ret