forked from idea4good/GuiLiteSamples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
UIcode.cpp
189 lines (173 loc) · 4.72 KB
/
UIcode.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#define GUILITE_ON //Do not define this macro once more!!!
#include "GuiLite.h"
#include <stdlib.h>
#include <string.h>
#include <math.h>
// 3D engine
void multiply(int m, int n, int p, float* a, float* b, float* c)// a[m][n] * b[n][p] = c[m][p]
{
for (int i = 0; i < m; i++) {
for (int j = 0; j < p; j++) {
c[i * p + j] = 0;
for (int k = 0; k < n; k++) {
c[i * p + j] += a[i * n + k] * b[k * p + j];
}
}
}
}
void rotateX(float angle, float* point, float* output)// rotate matrix for X
{
static float rotation[3][3];
rotation[0][0] = 1;
rotation[1][1] = cos(angle);
rotation[1][2] = 0 - sin(angle);
rotation[2][1] = sin(angle);
rotation[2][2] = cos(angle);
multiply(3, 3, 1, (float*)rotation, point, output);
}
void rotateY(float angle, float* point, float* output)// rotate matrix for Y
{
static float rotation[3][3];
rotation[0][0] = cos(angle);
rotation[0][2] = sin(angle);
rotation[1][1] = 1;
rotation[2][0] = 0 - sin(angle);
rotation[2][2] = cos(angle);
multiply(3, 3, 1, (float*)rotation, point, output);
}
void rotateZ(float angle, float* point, float* output)// rotate matrix for Z
{
static float rotation[3][3];
rotation[0][0] = cos(angle);
rotation[0][1] = 0 - sin(angle);
rotation[1][0] = sin(angle);
rotation[1][1] = cos(angle);
rotation[2][2] = 1;
multiply(3, 3, 1, (float*)rotation, point, output);
}
void projectOnXY(float* point, float* output, float zFactor = 1)
{
static float projection[2][3];//project on X/Y face
projection[0][0] = zFactor;//the raio of point.z and camera.z
projection[1][1] = zFactor;//the raio of point.z and camera.z
multiply(2, 3, 1, (float*)projection, point, output);
}
#define UI_WIDTH 240
#define UI_HEIGHT 320
#define SPACE 13
#define ROW 15
#define COL 15
#define POINT_CNT ROW * COL
#define AMPLITUDE 50
static c_surface* s_surface;
static c_display* s_display;
class Cwave
{
public:
Cwave()
{
rotate_angle = 0;//1.57;
angle = 0;
memset(points2d, 0, sizeof(points2d));
for (int y = 0; y < ROW; y++)
{
for (int x = 0; x < COL; x++)
{
points[y * COL + x][0] = x * SPACE - (UI_WIDTH / 2);
points[y * COL + x][1] = y * SPACE - (UI_WIDTH / 2);
}
}
}
virtual void draw(int x, int y, bool isErase)
{
for (int i = 0; i < POINT_CNT; i++)
{
float factor = (1 + points[i][2] / AMPLITUDE) / 2;
unsigned int color = GL_RGB(210 * factor, 130 * factor, 255 * factor);
s_surface->fill_rect(points2d[i][0] + x - 1, points2d[i][1] + y - 1, points2d[i][0] + x + 1, points2d[i][1] + y + 1, (isErase) ? 0 : color, Z_ORDER_LEVEL_0);
}
}
virtual void swing(float rotate_angle_diff)
{
if (rotate_angle_diff == 0.0)
{
angle += 0.1;
for (int y = 0; y < ROW; y++)
{
for (int x = 0; x < COL; x++)
{
float offset = sqrt((x - COL / 2) * (x - COL / 2) + (y - ROW / 2) * (y - ROW / 2)) / 2;
points[y * COL + x][2] = sin(angle + offset) * AMPLITUDE;
}
}
}
else
{
rotate_angle += rotate_angle_diff;
if (rotate_angle > 1.0)
{
rotate_angle = 1.0;
}
if (rotate_angle < 0.0)
{
rotate_angle = 0.0;
}
}
float rotateOut1[3][1];
for (int i = 0; i < POINT_CNT; i++)
{
rotateX(rotate_angle, points[i], (float*)rotateOut1);
float zFactor = UI_WIDTH / (UI_WIDTH - rotateOut1[2][0]);
projectOnXY((float*)rotateOut1, (float*)points2d[i], zFactor);
}
}
private:
static float points[POINT_CNT][3];
float points2d[POINT_CNT][2];
float angle, rotate_angle;
};
float Cwave::points[POINT_CNT][3];//x, y, z
// Demo
void create_ui(void* phy_fb, int screen_width, int screen_height, int color_bytes, struct DISPLAY_DRIVER* driver) {
static c_surface surface(UI_WIDTH, UI_HEIGHT, color_bytes, Z_ORDER_LEVEL_0);
static c_display display(phy_fb, screen_width, screen_height, &surface, driver);
s_surface = &surface;
s_display = &display;
s_surface->fill_rect(0, 0, UI_WIDTH - 1, UI_HEIGHT - 1, 0, Z_ORDER_LEVEL_0);
Cwave theCwave;
unsigned int step = 0;
while(1) {
theCwave.draw(30 + (UI_WIDTH / 2), UI_HEIGHT / 2, true);//erase footprint
if (step > 400)
{
step = 0;
}
else if (step > 300)
{
theCwave.swing(-0.01);
}
else if (step > 200)
{
theCwave.swing(0.0);
}
else if (step > 100)
{
theCwave.swing(0.01);
}
else
{
theCwave.swing(0.0);
}
theCwave.draw(30 + (UI_WIDTH / 2), UI_HEIGHT / 2, false);//refresh Cwave
thread_sleep(25);
step++;
}
}
//////////////////////// interface for all platform ////////////////////////
extern "C" void startHello3Dwave(void* phy_fb, int width, int height, int color_bytes, struct DISPLAY_DRIVER* driver) {
create_ui(phy_fb, width, height, color_bytes, driver);
}
extern "C" void* getUiOfHello3Dwave(int* width, int* height, bool force_update)
{
return s_display->get_updated_fb(width, height, force_update);
}