forked from generalelectrix/FastLED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
colorutils.h
811 lines (703 loc) · 26.2 KB
/
colorutils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
#ifndef __INC_COLORUTILS_H
#define __INC_COLORUTILS_H
#include <avr/pgmspace.h>
#include "pixeltypes.h"
// fill_solid - fill a range of LEDs with a solid color
// Example: fill_solid( leds, NUM_LEDS, CRGB(50,0,200));
void fill_solid( struct CRGB * leds, int numToFill,
const struct CRGB& color);
void fill_solid( struct CHSV* targetArray, int numToFill,
const struct CHSV& hsvColor);
// fill_rainbow - fill a range of LEDs with a rainbow of colors, at
// full saturation and full value (brightness)
void fill_rainbow( struct CRGB * pFirstLED, int numToFill,
uint8_t initialhue,
uint8_t deltahue = 5);
void fill_rainbow( struct CHSV * targetArray, int numToFill,
uint8_t initialhue,
uint8_t deltahue = 5);
// fill_gradient - fill an array of colors with a smooth HSV gradient
// between two specified HSV colors.
// Since 'hue' is a value around a color wheel,
// there are always two ways to sweep from one hue
// to another.
// This function lets you specify which way you want
// the hue gradient to sweep around the color wheel:
// FORWARD_HUES: hue always goes clockwise
// BACKWARD_HUES: hue always goes counter-clockwise
// SHORTEST_HUES: hue goes whichever way is shortest
// LONGEST_HUES: hue goes whichever way is longest
// The default is SHORTEST_HUES, as this is nearly
// always what is wanted.
//
// fill_gradient can write the gradient colors EITHER
// (1) into an array of CRGBs (e.g., into leds[] array, or an RGB Palette)
// OR
// (2) into an array of CHSVs (e.g. an HSV Palette).
//
// In the case of writing into a CRGB array, the gradient is
// computed in HSV space, and then HSV values are converted to RGB
// as they're written into the RGB array.
typedef enum { FORWARD_HUES, BACKWARD_HUES, SHORTEST_HUES, LONGEST_HUES } TGradientDirectionCode;
#define saccum87 int16_t
template <typename T>
void fill_gradient( T* targetArray,
uint16_t startpos, CHSV startcolor,
uint16_t endpos, CHSV endcolor,
TGradientDirectionCode directionCode = SHORTEST_HUES )
{
// if the points are in the wrong order, straighten them
if( endpos < startpos ) {
uint16_t t = endpos;
CHSV tc = endcolor;
startpos = t;
startcolor = tc;
endcolor = startcolor;
endpos = startpos;
}
// If we're fading toward black (val=0) or white (sat=0),
// then set the endhue to the starthue.
// This lets us ramp smoothly to black or white, regardless
// of what 'hue' was set in the endcolor (since it doesn't matter)
if( endcolor.value == 0 || endcolor.saturation == 0) {
endcolor.hue = startcolor.hue;
}
// Similarly, if we're fading in from black (val=0) or white (sat=0)
// then set the starthue to the endhue.
// This lets us ramp smoothly up from black or white, regardless
// of what 'hue' was set in the startcolor (since it doesn't matter)
if( startcolor.value == 0 || startcolor.saturation == 0) {
startcolor.hue = endcolor.hue;
}
saccum87 huedistance87;
saccum87 satdistance87;
saccum87 valdistance87;
satdistance87 = (endcolor.sat - startcolor.sat) << 7;
valdistance87 = (endcolor.val - startcolor.val) << 7;
uint8_t huedelta8 = endcolor.hue - startcolor.hue;
if( directionCode == SHORTEST_HUES ) {
directionCode = FORWARD_HUES;
if( huedelta8 > 127) {
directionCode = BACKWARD_HUES;
}
}
if( directionCode == LONGEST_HUES ) {
directionCode = FORWARD_HUES;
if( huedelta8 < 128) {
directionCode = BACKWARD_HUES;
}
}
if( directionCode == FORWARD_HUES) {
huedistance87 = huedelta8 << 7;
}
else /* directionCode == BACKWARD_HUES */
{
huedistance87 = (uint8_t)(256 - huedelta8) << 7;
huedistance87 = -huedistance87;
}
uint16_t pixeldistance = endpos - startpos;
int16_t divisor = pixeldistance ? pixeldistance : 1;
saccum87 huedelta87 = huedistance87 / divisor;
saccum87 satdelta87 = satdistance87 / divisor;
saccum87 valdelta87 = valdistance87 / divisor;
huedelta87 *= 2;
satdelta87 *= 2;
valdelta87 *= 2;
accum88 hue88 = startcolor.hue << 8;
accum88 sat88 = startcolor.sat << 8;
accum88 val88 = startcolor.val << 8;
for( uint16_t i = startpos; i <= endpos; i++) {
targetArray[i] = CHSV( hue88 >> 8, sat88 >> 8, val88 >> 8);
hue88 += huedelta87;
sat88 += satdelta87;
val88 += valdelta87;
}
}
// Convenience functions to fill an array of colors with a
// two-color, three-color, or four-color gradient
template <typename T>
void fill_gradient( T* targetArray, uint16_t numLeds, const CHSV& c1, const CHSV& c2,
TGradientDirectionCode directionCode = SHORTEST_HUES )
{
uint16_t last = numLeds - 1;
fill_gradient( targetArray, 0, c1, last, c2, directionCode);
}
template <typename T>
void fill_gradient( T* targetArray, uint16_t numLeds,
const CHSV& c1, const CHSV& c2, const CHSV& c3,
TGradientDirectionCode directionCode = SHORTEST_HUES )
{
uint16_t half = (numLeds / 2);
uint16_t last = numLeds - 1;
fill_gradient( targetArray, 0, c1, half, c2, directionCode);
fill_gradient( targetArray, half, c2, last, c3, directionCode);
}
template <typename T>
void fill_gradient( T* targetArray, uint16_t numLeds,
const CHSV& c1, const CHSV& c2, const CHSV& c3, const CHSV& c4,
TGradientDirectionCode directionCode = SHORTEST_HUES )
{
uint16_t onethird = (numLeds / 3);
uint16_t twothirds = ((numLeds * 2) / 3);
uint16_t last = numLeds - 1;
fill_gradient( targetArray, 0, c1, onethird, c2, directionCode);
fill_gradient( targetArray, onethird, c2, twothirds, c3, directionCode);
fill_gradient( targetArray, twothirds, c3, last, c4, directionCode);
}
// convenience synonym
#define fill_gradient_HSV fill_gradient
// fill_gradient_RGB - fill a range of LEDs with a smooth RGB gradient
// between two specified RGB colors.
// Unlike HSV, there is no 'color wheel' in RGB space,
// and therefore there's only one 'direction' for the
// gradient to go, and no 'direction code' is needed.
void fill_gradient_RGB( CRGB* leds,
uint16_t startpos, CRGB startcolor,
uint16_t endpos, CRGB endcolor );
void fill_gradient_RGB( CRGB* leds, uint16_t numLeds, const CRGB& c1, const CRGB& c2);
void fill_gradient_RGB( CRGB* leds, uint16_t numLeds, const CRGB& c1, const CRGB& c2, const CRGB& c3);
void fill_gradient_RGB( CRGB* leds, uint16_t numLeds, const CRGB& c1, const CRGB& c2, const CRGB& c3, const CRGB& c4);
// fadeLightBy and fade_video - reduce the brightness of an array
// of pixels all at once. Guaranteed
// to never fade all the way to black.
// (The two names are synonyms.)
void fadeLightBy( CRGB* leds, uint16_t num_leds, uint8_t fadeBy);
void fade_video( CRGB* leds, uint16_t num_leds, uint8_t fadeBy);
// nscale8_video - scale down the brightness of an array of pixels
// all at once. Guaranteed to never scale a pixel
// all the way down to black, unless 'scale' is zero.
void nscale8_video( CRGB* leds, uint16_t num_leds, uint8_t scale);
// fadeToBlackBy and fade_raw - reduce the brightness of an array
// of pixels all at once. These
// functions will eventually fade all
// the way to black.
// (The two names are synonyms.)
void fadeToBlackBy( CRGB* leds, uint16_t num_leds, uint8_t fadeBy);
void fade_raw( CRGB* leds, uint16_t num_leds, uint8_t fadeBy);
// nscale8 - scale down the brightness of an array of pixels
// all at once. This function can scale pixels all the
// way down to black even if 'scale' is not zero.
void nscale8( CRGB* leds, uint16_t num_leds, uint8_t scale);
// Pixel blending
//
// blend - computes a new color blended some fraction of the way
// between two other colors.
CRGB blend( const CRGB& p1, const CRGB& p2, fract8 amountOfP2 );
CHSV blend( const CHSV& p1, const CHSV& p2, fract8 amountOfP2,
TGradientDirectionCode directionCode = SHORTEST_HUES );
// blend - computes a new color blended array of colors, each
// a given fraction of the way between corresponding
// elements of two source arrays of colors.
// Useful for blending palettes.
CRGB* blend( const CRGB* src1, const CRGB* src2, CRGB* dest,
uint16_t count, fract8 amountOfsrc2 );
CHSV* blend( const CHSV* src1, const CHSV* src2, CHSV* dest,
uint16_t count, fract8 amountOfsrc2,
TGradientDirectionCode directionCode = SHORTEST_HUES );
// nblend - destructively modifies one color, blending
// in a given fraction of an overlay color
CRGB& nblend( CRGB& existing, const CRGB& overlay, fract8 amountOfOverlay );
CHSV& nblend( CHSV& existing, const CHSV& overlay, fract8 amountOfOverlay,
TGradientDirectionCode directionCode = SHORTEST_HUES );
// nblend - destructively blends a given fraction of
// a new color array into an existing color array
void nblend( CRGB* existing, CRGB* overlay, uint16_t count, fract8 amountOfOverlay);
void nblend( CHSV* existing, CHSV* overlay, uint16_t count, fract8 amountOfOverlay,
TGradientDirectionCode directionCode = SHORTEST_HUES);
// CRGB HeatColor( uint8_t temperature)
//
// Approximates a 'black body radiation' spectrum for
// a given 'heat' level. This is useful for animations of 'fire'.
// Heat is specified as an arbitrary scale from 0 (cool) to 255 (hot).
// This is NOT a chromatically correct 'black body radiation'
// spectrum, but it's surprisingly close, and it's fast and small.
CRGB HeatColor( uint8_t temperature);
// Palettes
//
// RGB Palettes map an 8-bit value (0..255) to an RGB color.
//
// You can create any color palette you wish; a couple of starters
// are provided: Forest, Clouds, Lava, Ocean, Rainbow, and Rainbow Stripes.
//
// Palettes come in the traditional 256-entry variety, which take
// up 768 bytes of RAM, and lightweight 16-entry varieties. The 16-entry
// variety automatically interpolates between its entries to produce
// a full 256-element color map, but at a cost of only 48 bytes or RAM.
//
// Basic operation is like this: (example shows the 16-entry variety)
// 1. Declare your palette storage:
// CRGBPalette16 myPalette;
//
// 2. Fill myPalette with your own 16 colors, or with a preset color scheme.
// You can specify your 16 colors a variety of ways:
// CRGBPalette16 myPalette(
// CRGB::Black,
// CRGB::Black,
// CRGB::Red,
// CRGB::Yellow,
// CRGB::Green,
// CRGB::Blue,
// CRGB::Purple,
// CRGB::Black,
//
// 0x100000,
// 0x200000,
// 0x400000,
// 0x800000,
//
// CHSV( 30,255,255),
// CHSV( 50,255,255),
// CHSV( 70,255,255),
// CHSV( 90,255,255)
// );
//
// Or you can initiaize your palette with a preset color scheme:
// myPalette = RainbowStripesColors_p;
//
// 3. Any time you want to set a pixel to a color from your palette, use
// "ColorFromPalette(...)" as shown:
//
// uint8_t index = /* any value 0..255 */;
// leds[i] = ColorFromPalette( myPalette, index);
//
// Even though your palette has only 16 explicily defined entries, you
// can use an 'index' from 0..255. The 16 explicit palette entries will
// be spread evenly across the 0..255 range, and the intermedate values
// will be RGB-interpolated between adjacent explicit entries.
//
// It's easier to use than it sounds.
//
class CRGBPalette16;
class CRGBPalette256;
class CHSVPalette16;
class CHSVPalette256;
typedef uint32_t TProgmemRGBPalette16[16];
typedef uint32_t TProgmemHSVPalette16[16];
#define TProgmemPalette16 TProgmemRGBPalette16
// Convert a 16-entry palette to a 256-entry palette
void UpscalePalette(const struct CRGBPalette16& srcpal16, struct CRGBPalette256& destpal256);
void UpscalePalette(const struct CHSVPalette16& srcpal16, struct CHSVPalette256& destpal256);
class CHSVPalette16 {
public:
CHSV entries[16];
CHSVPalette16() {};
CHSVPalette16( const CHSV& c00,const CHSV& c01,const CHSV& c02,const CHSV& c03,
const CHSV& c04,const CHSV& c05,const CHSV& c06,const CHSV& c07,
const CHSV& c08,const CHSV& c09,const CHSV& c10,const CHSV& c11,
const CHSV& c12,const CHSV& c13,const CHSV& c14,const CHSV& c15 )
{
entries[0]=c00; entries[1]=c01; entries[2]=c02; entries[3]=c03;
entries[4]=c04; entries[5]=c05; entries[6]=c06; entries[7]=c07;
entries[8]=c08; entries[9]=c09; entries[10]=c10; entries[11]=c11;
entries[12]=c12; entries[13]=c13; entries[14]=c14; entries[15]=c15;
};
CHSVPalette16( const CHSVPalette16& rhs)
{
memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
}
CHSVPalette16& operator=( const CHSVPalette16& rhs)
{
memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
return *this;
}
CHSVPalette16( const TProgmemHSVPalette16& rhs)
{
for( uint8_t i = 0; i < 16; i++) {
CRGB xyz = pgm_read_dword_near( rhs + i);
entries[i].hue = xyz.red;
entries[i].sat = xyz.green;
entries[i].val = xyz.blue;
}
}
CHSVPalette16& operator=( const TProgmemHSVPalette16& rhs)
{
for( uint8_t i = 0; i < 16; i++) {
CRGB xyz = pgm_read_dword_near( rhs + i);
entries[i].hue = xyz.red;
entries[i].sat = xyz.green;
entries[i].val = xyz.blue;
}
return *this;
}
inline CHSV& operator[] (uint8_t x) __attribute__((always_inline))
{
return entries[x];
}
inline const CHSV& operator[] (uint8_t x) const __attribute__((always_inline))
{
return entries[x];
}
inline CHSV& operator[] (int x) __attribute__((always_inline))
{
return entries[(uint8_t)x];
}
inline const CHSV& operator[] (int x) const __attribute__((always_inline))
{
return entries[(uint8_t)x];
}
operator CHSV*()
{
return &(entries[0]);
}
CHSVPalette16( const CHSV& c1)
{
fill_solid( &(entries[0]), 16, c1);
}
CHSVPalette16( const CHSV& c1, const CHSV& c2)
{
fill_gradient( &(entries[0]), 16, c1, c2);
}
CHSVPalette16( const CHSV& c1, const CHSV& c2, const CHSV& c3)
{
fill_gradient( &(entries[0]), 16, c1, c2, c3);
}
CHSVPalette16( const CHSV& c1, const CHSV& c2, const CHSV& c3, const CHSV& c4)
{
fill_gradient( &(entries[0]), 16, c1, c2, c3, c4);
}
};
class CHSVPalette256 {
public:
CHSV entries[256];
CHSVPalette256() {};
CHSVPalette256( const CHSV& c00,const CHSV& c01,const CHSV& c02,const CHSV& c03,
const CHSV& c04,const CHSV& c05,const CHSV& c06,const CHSV& c07,
const CHSV& c08,const CHSV& c09,const CHSV& c10,const CHSV& c11,
const CHSV& c12,const CHSV& c13,const CHSV& c14,const CHSV& c15 )
{
CHSVPalette16 p16(c00,c01,c02,c03,c04,c05,c06,c07,
c08,c09,c10,c11,c12,c13,c14,c15);
*this = p16;
};
CHSVPalette256( const CHSVPalette256& rhs)
{
memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
}
CHSVPalette256& operator=( const CHSVPalette256& rhs)
{
memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
return *this;
}
CHSVPalette256( const CHSVPalette16& rhs16)
{
UpscalePalette( rhs16, *this);
}
CHSVPalette256& operator=( const CHSVPalette16& rhs16)
{
UpscalePalette( rhs16, *this);
return *this;
}
CHSVPalette256( const TProgmemRGBPalette16& rhs)
{
CHSVPalette16 p16(rhs);
*this = p16;
}
CHSVPalette256& operator=( const TProgmemRGBPalette16& rhs)
{
CHSVPalette16 p16(rhs);
*this = p16;
return *this;
}
inline CHSV& operator[] (uint8_t x) __attribute__((always_inline))
{
return entries[x];
}
inline const CHSV& operator[] (uint8_t x) const __attribute__((always_inline))
{
return entries[x];
}
inline CHSV& operator[] (int x) __attribute__((always_inline))
{
return entries[(uint8_t)x];
}
inline const CHSV& operator[] (int x) const __attribute__((always_inline))
{
return entries[(uint8_t)x];
}
operator CHSV*()
{
return &(entries[0]);
}
CHSVPalette256( const CHSV& c1)
{
fill_solid( &(entries[0]), 256, c1);
}
CHSVPalette256( const CHSV& c1, const CHSV& c2)
{
fill_gradient( &(entries[0]), 256, c1, c2);
}
CHSVPalette256( const CHSV& c1, const CHSV& c2, const CHSV& c3)
{
fill_gradient( &(entries[0]), 256, c1, c2, c3);
}
CHSVPalette256( const CHSV& c1, const CHSV& c2, const CHSV& c3, const CHSV& c4)
{
fill_gradient( &(entries[0]), 256, c1, c2, c3, c4);
}
};
class CRGBPalette16 {
public:
CRGB entries[16];
CRGBPalette16() {};
CRGBPalette16( const CRGB& c00,const CRGB& c01,const CRGB& c02,const CRGB& c03,
const CRGB& c04,const CRGB& c05,const CRGB& c06,const CRGB& c07,
const CRGB& c08,const CRGB& c09,const CRGB& c10,const CRGB& c11,
const CRGB& c12,const CRGB& c13,const CRGB& c14,const CRGB& c15 )
{
entries[0]=c00; entries[1]=c01; entries[2]=c02; entries[3]=c03;
entries[4]=c04; entries[5]=c05; entries[6]=c06; entries[7]=c07;
entries[8]=c08; entries[9]=c09; entries[10]=c10; entries[11]=c11;
entries[12]=c12; entries[13]=c13; entries[14]=c14; entries[15]=c15;
};
CRGBPalette16( const CRGBPalette16& rhs)
{
memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
}
CRGBPalette16& operator=( const CRGBPalette16& rhs)
{
memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
return *this;
}
CRGBPalette16( const CHSVPalette16& rhs)
{
for( uint8_t i = 0; i < 16; i++) {
entries[i] = rhs.entries[i]; // implicit HSV-to-RGB conversion
}
}
CRGBPalette16& operator=( const CHSVPalette16& rhs)
{
for( uint8_t i = 0; i < 16; i++) {
entries[i] = rhs.entries[i]; // implicit HSV-to-RGB conversion
}
return *this;
}
CRGBPalette16( const TProgmemRGBPalette16& rhs)
{
for( uint8_t i = 0; i < 16; i++) {
entries[i] = pgm_read_dword_near( rhs + i);
}
}
CRGBPalette16& operator=( const TProgmemRGBPalette16& rhs)
{
for( uint8_t i = 0; i < 16; i++) {
entries[i] = pgm_read_dword_near( rhs + i);
}
return *this;
}
inline CRGB& operator[] (uint8_t x) __attribute__((always_inline))
{
return entries[x];
}
inline const CRGB& operator[] (uint8_t x) const __attribute__((always_inline))
{
return entries[x];
}
inline CRGB& operator[] (int x) __attribute__((always_inline))
{
return entries[(uint8_t)x];
}
inline const CRGB& operator[] (int x) const __attribute__((always_inline))
{
return entries[(uint8_t)x];
}
operator CRGB*()
{
return &(entries[0]);
}
CRGBPalette16( const CHSV& c1)
{
fill_solid( &(entries[0]), 16, c1);
}
CRGBPalette16( const CHSV& c1, const CHSV& c2)
{
fill_gradient( &(entries[0]), 16, c1, c2);
}
CRGBPalette16( const CHSV& c1, const CHSV& c2, const CHSV& c3)
{
fill_gradient( &(entries[0]), 16, c1, c2, c3);
}
CRGBPalette16( const CHSV& c1, const CHSV& c2, const CHSV& c3, const CHSV& c4)
{
fill_gradient( &(entries[0]), 16, c1, c2, c3, c4);
}
CRGBPalette16( const CRGB& c1)
{
fill_solid( &(entries[0]), 16, c1);
}
CRGBPalette16( const CRGB& c1, const CRGB& c2)
{
fill_gradient_RGB( &(entries[0]), 16, c1, c2);
}
CRGBPalette16( const CRGB& c1, const CRGB& c2, const CRGB& c3)
{
fill_gradient_RGB( &(entries[0]), 16, c1, c2, c3);
}
CRGBPalette16( const CRGB& c1, const CRGB& c2, const CRGB& c3, const CRGB& c4)
{
fill_gradient_RGB( &(entries[0]), 16, c1, c2, c3, c4);
}
};
class CRGBPalette256 {
public:
CRGB entries[256];
CRGBPalette256() {};
CRGBPalette256( const CRGB& c00,const CRGB& c01,const CRGB& c02,const CRGB& c03,
const CRGB& c04,const CRGB& c05,const CRGB& c06,const CRGB& c07,
const CRGB& c08,const CRGB& c09,const CRGB& c10,const CRGB& c11,
const CRGB& c12,const CRGB& c13,const CRGB& c14,const CRGB& c15 )
{
CRGBPalette16 p16(c00,c01,c02,c03,c04,c05,c06,c07,
c08,c09,c10,c11,c12,c13,c14,c15);
*this = p16;
};
CRGBPalette256( const CRGBPalette256& rhs)
{
memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
}
CRGBPalette256& operator=( const CRGBPalette256& rhs)
{
memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
return *this;
}
CRGBPalette256( const CHSVPalette256& rhs)
{
for( int i = 0; i < 256; i++) {
entries[i] = rhs.entries[i]; // implicit HSV-to-RGB conversion
}
}
CRGBPalette256& operator=( const CHSVPalette256& rhs)
{
for( int i = 0; i < 256; i++) {
entries[i] = rhs.entries[i]; // implicit HSV-to-RGB conversion
}
return *this;
}
CRGBPalette256( const CRGBPalette16& rhs16)
{
UpscalePalette( rhs16, *this);
}
CRGBPalette256& operator=( const CRGBPalette16& rhs16)
{
UpscalePalette( rhs16, *this);
return *this;
}
CRGBPalette256( const TProgmemRGBPalette16& rhs)
{
CRGBPalette16 p16(rhs);
*this = p16;
}
CRGBPalette256& operator=( const TProgmemRGBPalette16& rhs)
{
CRGBPalette16 p16(rhs);
*this = p16;
return *this;
}
inline CRGB& operator[] (uint8_t x) __attribute__((always_inline))
{
return entries[x];
}
inline const CRGB& operator[] (uint8_t x) const __attribute__((always_inline))
{
return entries[x];
}
inline CRGB& operator[] (int x) __attribute__((always_inline))
{
return entries[(uint8_t)x];
}
inline const CRGB& operator[] (int x) const __attribute__((always_inline))
{
return entries[(uint8_t)x];
}
operator CRGB*()
{
return &(entries[0]);
}
CRGBPalette256( const CHSV& c1)
{
fill_solid( &(entries[0]), 256, c1);
}
CRGBPalette256( const CHSV& c1, const CHSV& c2)
{
fill_gradient( &(entries[0]), 256, c1, c2);
}
CRGBPalette256( const CHSV& c1, const CHSV& c2, const CHSV& c3)
{
fill_gradient( &(entries[0]), 256, c1, c2, c3);
}
CRGBPalette256( const CHSV& c1, const CHSV& c2, const CHSV& c3, const CHSV& c4)
{
fill_gradient( &(entries[0]), 256, c1, c2, c3, c4);
}
CRGBPalette256( const CRGB& c1)
{
fill_solid( &(entries[0]), 256, c1);
}
CRGBPalette256( const CRGB& c1, const CRGB& c2)
{
fill_gradient_RGB( &(entries[0]), 256, c1, c2);
}
CRGBPalette256( const CRGB& c1, const CRGB& c2, const CRGB& c3)
{
fill_gradient_RGB( &(entries[0]), 256, c1, c2, c3);
}
CRGBPalette256( const CRGB& c1, const CRGB& c2, const CRGB& c3, const CRGB& c4)
{
fill_gradient_RGB( &(entries[0]), 256, c1, c2, c3, c4);
}
};
typedef enum { NOBLEND=0, BLEND=1 } TBlendType;
// Functions to retrieve single colors
CRGB ColorFromPalette( const CRGBPalette16& pal,
uint8_t index,
uint8_t brightness=255,
TBlendType blendType=BLEND);
// 8-bit interpolating version of ColorFromPalette for 16-color compact palettes.
CRGB ColorFromPaletteExtended( const CRGBPalette16& pal,
uint16_t index,
uint8_t brightness=255,
TBlendType blendType=BLEND);
CRGB ColorFromPalette( const CRGBPalette256& pal,
uint8_t index,
uint8_t brightness=255,
TBlendType blendType=NOBLEND );
CHSV ColorFromPalette( const CHSVPalette16& pal,
uint8_t index,
uint8_t brightness=255,
TBlendType blendType=BLEND);
CHSV ColorFromPalette( const CHSVPalette256& pal,
uint8_t index,
uint8_t brightness=255,
TBlendType blendType=NOBLEND );
// Fill a range of LEDs with a sequece of entryies from a palette
template <typename PALETTE>
void fill_palette(CRGB* L, uint16_t N, uint8_t startIndex, uint8_t incIndex,
const PALETTE& pal, uint8_t brightness, TBlendType blendType)
{
uint8_t colorIndex = startIndex;
for( uint16_t i = 0; i < N; i++) {
L[i] = ColorFromPalette( pal, colorIndex, brightness, blendType);
colorIndex += incIndex;
}
}
template <typename PALETTE>
void map_data_into_colors_through_palette(
uint8_t *dataArray, uint16_t dataCount,
CRGB* targetColorArray,
const PALETTE& pal,
uint8_t brightness=255,
uint8_t opacity=255,
TBlendType blendType=BLEND)
{
for( uint16_t i = 0; i < dataCount; i++) {
uint8_t d = dataArray[i];
CRGB rgb = ColorFromPalette( pal, d, brightness, blendType);
if( opacity == 255 ) {
targetColorArray[i] = rgb;
} else {
targetColorArray[i].nscale8( 256 - opacity);
rgb.nscale8_video( opacity);
targetColorArray[i] += rgb;
}
}
}
#endif