-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_bert.py
524 lines (438 loc) · 21.6 KB
/
train_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import glob
import logging
import os
import random
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from transformers import (
WEIGHTS_NAME,
AdamW,
AlbertConfig, AlbertTokenizer,
BertConfig, BertTokenizer,
DistilBertConfig, DistilBertTokenizer,
RobertaConfig, RobertaTokenizer,
XLMConfig, XLMRobertaConfig,
XLMRobertaTokenizer, XLMTokenizer,
XLNetConfig, XLNetTokenizer,
get_linear_schedule_with_warmup,
)
from data.dataloader_bert import itemDataset, collate_fn
from model.model_bert import (
BertForPersuasive, AlbertForPersuasive
)
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
from util.bert_parameter import add_bert_args
from util.parameter import (add_encoder_args, add_graph_args, add_dataset_args)
from util.loss import (hinge)
from sklearn.metrics import f1_score
logger = logging.getLogger(__name__)
ALL_MODELS = sum(
(
tuple(conf.pretrained_config_archive_map.keys())
for conf in (BertConfig, RobertaConfig, DistilBertConfig, XLMRobertaConfig)
),
(),
)
MODEL_CLASSES = {
"bert": (BertConfig, BertForPersuasive, BertTokenizer),
"albert": (AlbertConfig, AlbertForPersuasive, AlbertTokenizer),
#"xlnet": (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
#"xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
#"roberta": (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
#"distilbert": (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
#"albert": (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer),
#"xlmroberta": (XLMRobertaConfig, XLMRobertaForSequenceClassification, XLMRobertaTokenizer),
}
def parse_args():
parser = argparse.ArgumentParser()
parser = add_bert_args(parser)
parser = add_encoder_args(parser)
parser = add_graph_args(parser)
parser = add_dataset_args(parser)
args = parser.parse_args()
return args
def score(pred, criterion):
result = {}
pred = torch.cat(pred, dim=-1).view(-1)
result['loss'] = criterion(pred, torch.ones_like(pred)).item()
result['f1'] = f1_score(torch.ones_like(pred), (pred>0).long(), average='macro')
result['acc'] = (pred>0).float().mean().item()
result['diff'] = pred.mean().item()
return result, pred
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def build_data(args, data_path, pair_path, tokenizer):
dataset = {}
if(args.do_train):
dataset['train'] = itemDataset(data_path=data_path+'_train', pair_path=pair_path+'_train', tokenizer=tokenizer)
if(args.do_eval):
dataset['dev'] = itemDataset(data_path=data_path+'_dev', pair_path=pair_path+'_dev', tokenizer=tokenizer)
if(args.do_predict):
dataset['test'] = itemDataset(data_path=data_path+'_test', pair_path=pair_path+'_test', tokenizer=tokenizer)
return dataset
def convert(data, device):
temp = {}
for key, val in data.items():
try:
temp[key] = val.to(device)
except:
pass
return temp
def train(args, dataset, model, tokenizer, criterion):
""" Train the model """
if(args.local_rank in [-1, 0]):
tb_writer = SummaryWriter(logdir = args.output_dir+'/runs/')
train_dataset = dataset['train']
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate_fn)
if(args.max_steps > 0):
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if( os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
)):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if(args.fp16):
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# Distributed training (should be after apex fp16 initialization)
if(args.local_rank != -1):
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if(os.path.exists(args.model_name_or_path)):
# set global_step to gobal_step of last saved checkpoint from model path
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
)
set_seed(args) # Added here for reproductibility
temp_pred = []
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batches in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
outputs = []
for batch in batches:
inputs = convert(batch, args.device)
if args.model_type != "distilbert":
if(args.model_type not in ["bert", "xlnet"]):
# XLM and RoBERTa don"t use segment_ids
batch["token_type_ids"] = None
batch["topic_input_ids"] = None
output = model(**inputs)
outputs.append(output)
pred = (outputs[1]-outputs[0]).view(-1)
loss = criterion(pred, torch.ones_like(pred))
temp_pred.append(pred.detach().cpu())
if(args.n_gpu > 1):
loss = loss.mean() # mean() to average on multi-gpu parallel training
if(args.gradient_accumulation_steps > 1):
loss = loss / args.gradient_accumulation_steps
if(args.fp16):
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if((step + 1) % args.gradient_accumulation_steps == 0):
if(args.fp16):
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
scheduler.step() # Update learning rate schedule
optimizer.step()
model.zero_grad()
global_step += 1
if(args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0):
# Log metrics
if(args.local_rank == -1 and args.evaluate_during_training):
# Only evaluate when single GPU otherwise metrics may not average well
results, _ = evaluate(args, model, tokenizer, dataset['dev'], criterion, mode="dev")
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
result, _ = score(temp_pred, criterion)
for key, val in result.items():
tb_writer.add_scalar("train_{}".format(key), val, global_step)
logging_loss = tr_loss
temp_pred = []
if(args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0):
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if(not os.path.exists(output_dir)):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if(args.max_steps > 0 and global_step > args.max_steps):
epoch_iterator.close()
break
if(args.max_steps > 0 and global_step > args.max_steps):
train_iterator.close()
break
if(args.local_rank in [-1, 0]):
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, eval_dataset, criterion, mode, prefix=""):
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate_fn)
# Eval!
logger.info("***** Running evaluation %s *****", prefix)
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
nb_eval_steps = 0
total = {
'label':{'link':None, 'type':None, 'link_type':None},
'pred':{
'link_mst':None, 'link':None, 'type':None, 'link_type':None
},
'adu_len':None
}
model.eval()
total_pred = []
for batches in tqdm(eval_dataloader, desc="Evaluating"):
with torch.no_grad():
outputs = []
for batch in batches:
inputs = convert(batch, args.device)
######################################################################################
if args.model_type != "distilbert":
if(args.model_type not in ["bert", "xlnet"]):
# XLM and RoBERTa don"t use segment_ids
batch["token_type_ids"] = None
batch["topic_input_ids"] = None
output = model(**inputs)
outputs.append(output)
pred = (outputs[1]-outputs[0]).view(-1)
total_pred.append(pred.detach().cpu())
nb_eval_steps += 1
result, pred = score(total_pred, criterion)
logger.info("***** Eval results %s *****", prefix)
for key, val in result.items():
logger.info("%s = %s", key, str(val))
return result, pred
def main():
args = parse_args()
if( os.path.exists(args.output_dir) and os.listdir(args.output_dir)
and args.do_train and not args.overwrite_output_dir):
pass
#raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
else:
os.makedirs(args.output_dir)
# deal with logger output
if(args.do_train):
fh = logging.FileHandler(args.output_dir+'/train.log')
elif(args.do_predict):
fh = logging.FileHandler(args.output_dir+'/test.log')
elif(args.do_eval):
fh = logging.FileHandler(args.output_dir+'/eval.log')
fh.setLevel(logging.DEBUG)
logger.addHandler(fh)
# Setup distant debugging if needed
if(args.server_ip and args.server_port):
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if(args.local_rank == -1 or args.no_cuda):
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if(args.local_rank not in [-1, 0]):
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None,
)
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model = model_class.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
args=args,
cache_dir=args.cache_dir if args.cache_dir else None,
)
if(args.model_type=='albert'):
model.albert = torch.nn.DataParallel(model.albert)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
dataset = build_data(args, args.data_path, args.pair_path, tokenizer)
if(args.criterion =="bce" ):
criterion = nn.BCEWithLogitsLoss()
elif(args.criterion == 'hinge'):
criterion = hinge
else:
raise ValueError('no this loss function')
# Training
if(args.do_train):
global_step, tr_loss = train(args, dataset, model, tokenizer, criterion)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if(args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0)):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Evaluation
results = {}
if(args.do_eval and args.local_rank in [-1, 0]):
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
)
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint, args=args)
model.to(args.device)
result, predictions = evaluate(args, model, tokenizer, dataset['dev'], criterion, mode="dev", prefix=global_step)
if global_step:
result = {"{}_{}".format(global_step, k): v for k, v in result.items()}
results.update(result)
torch.save(predictions, os.path.join(args.output_dir, "results.pt"))
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
for key in sorted(results.keys()):
writer.write("{} = {}\n".format(key, str(results[key])))
if(args.do_predict and args.local_rank in [-1, 0]):
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.output_dir, args=args)
model.to(args.device)
result, predictions = evaluate(args, model, tokenizer, dataset['test'], criterion, mode="test")
torch.save(predictions, os.path.join(args.output_dir, "results.pt"))
return results
if __name__ == "__main__":
main()