forked from udacity/AIND-Recognizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
asl_data.py
297 lines (246 loc) · 11.8 KB
/
asl_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os
import numpy as np
import pandas as pd
class AslDb(object):
""" American Sign Language database drawn from the RWTH-BOSTON-104 frame positional data
This class has been designed to provide a convenient interface for individual word data for students in the Udacity AI Nanodegree Program.
For example, to instantiate and load train/test files using a feature_method
definition named features, the following snippet may be used:
asl = AslDb()
asl.build_training(tr_file, features)
asl.build_test(tst_file, features)
Reference for the original ASL data:
http://www-i6.informatik.rwth-aachen.de/~dreuw/database-rwth-boston-104.php
The sentences provided in the data have been segmented into isolated words for this database
"""
def __init__(self,
hands_fn=os.path.join('data', 'hands_condensed.csv'),
speakers_fn=os.path.join('data', 'speaker.csv'),
):
""" loads ASL database from csv files with hand position information by frame, and speaker information
:param hands_fn: str
filename of hand position csv data with expected format:
video,frame,left-x,left-y,right-x,right-y,nose-x,nose-y
:param speakers_fn:
filename of video speaker csv mapping with expected format:
video,speaker
Instance variables:
df: pandas dataframe
snippit example:
left-x left-y right-x right-y nose-x nose-y speaker
video frame
98 0 149 181 170 175 161 62 woman-1
1 149 181 170 175 161 62 woman-1
2 149 181 170 175 161 62 woman-1
"""
self.df = pd.read_csv(hands_fn).merge(
pd.read_csv(speakers_fn), on='video')
self.df.set_index(['video', 'frame'], inplace=True)
def build_training(self, feature_list, csvfilename=os.path.join('data', 'train_words.csv')):
""" wrapper creates sequence data objects for training words suitable for hmmlearn library
:param feature_list: list of str label names
:param csvfilename: str
:return: WordsData object
dictionary of lists of feature list sequence lists for each word
{'FRANK': [[[87, 225], [87, 225], ...], [[88, 219], [88, 219], ...]]]}
"""
return WordsData(self, csvfilename, feature_list)
def build_test(self, feature_method, csvfile=os.path.join('data', 'test_words.csv')):
""" wrapper creates sequence data objects for individual test word items suitable for hmmlearn library
:param feature_method: Feature function
:param csvfile: str
:return: SinglesData object
dictionary of lists of feature list sequence lists for each indexed
{3: [[[87, 225], [87, 225], ...]]]}
"""
return SinglesData(self, csvfile, feature_method)
class WordsData(object):
""" class provides loading and getters for ASL data suitable for use with hmmlearn library
"""
def __init__(self, asl: AslDb, csvfile: str, feature_list: list):
""" loads training data sequences suitable for use with hmmlearn library based on feature_method chosen
:param asl: ASLdata object
:param csvfile: str
filename of csv file containing word training start and end frame data with expected format:
video,speaker,word,startframe,endframe
:param feature_list: list of str feature labels
"""
self._data = self._load_data(asl, csvfile, feature_list)
self._hmm_data = create_hmmlearn_data(self._data)
self.num_items = len(self._data)
self.words = list(self._data.keys())
def _load_data(self, asl, fn, feature_list):
""" Consolidates sequenced feature data into a dictionary of words
:param asl: ASLdata object
:param fn: str
filename of csv file containing word training data
:param feature_list: list of str
:return: dict
"""
tr_df = pd.read_csv(fn)
dict = {}
for i in range(len(tr_df)):
word = tr_df.ix[i, 'word']
video = tr_df.ix[i, 'video']
new_sequence = [] # list of sample lists for a sequence
for frame in range(tr_df.ix[i, 'startframe'], tr_df.ix[i, 'endframe'] + 1):
vid_frame = video, frame
sample = [asl.df.ix[vid_frame][f] for f in feature_list]
if len(sample) > 0: # dont add if not found
new_sequence.append(sample)
if word in dict:
dict[word].append(new_sequence) # list of sequences
else:
dict[word] = [new_sequence]
return dict
def get_all_sequences(self):
""" getter for entire db of words as series of sequences of feature lists for each frame
:return: dict
dictionary of lists of feature list sequence lists for each word
{'FRANK': [[[87, 225], [87, 225], ...], [[88, 219], [88, 219], ...]]],
...}
"""
return self._data
def get_all_Xlengths(self):
""" getter for entire db of words as (X, lengths) tuple for use with hmmlearn library
:return: dict
dictionary of (X, lengths) tuple, where X is a numpy array of feature lists and lengths is
a list of lengths of sequences within X
{'FRANK': (array([[ 87, 225],[ 87, 225], ... [ 87, 225, 62, 127], [ 87, 225, 65, 128]]), [14, 18]),
...}
"""
return self._hmm_data
def get_word_sequences(self, word: str):
""" getter for single word series of sequences of feature lists for each frame
:param word: str
:return: list
lists of feature list sequence lists for given word
[[[87, 225], [87, 225], ...], [[88, 219], [88, 219], ...]]]
"""
return self._data[word]
def get_word_Xlengths(self, word: str):
""" getter for single word (X, lengths) tuple for use with hmmlearn library
:param word:
:return: (list, list)
(X, lengths) tuple, where X is a numpy array of feature lists and lengths is
a list of lengths of sequences within X
(array([[ 87, 225],[ 87, 225], ... [ 87, 225, 62, 127], [ 87, 225, 65, 128]]), [14, 18])
"""
return self._hmm_data[word]
class SinglesData(object):
""" class provides loading and getters for ASL data suitable for use with hmmlearn library
"""
def __init__(self, asl: AslDb, csvfile: str, feature_list):
""" loads training data sequences suitable for use with hmmlearn library based on feature_method chosen
:param asl: ASLdata object
:param csvfile: str
filename of csv file containing word training start and end frame data with expected format:
video,speaker,word,startframe,endframe
:param feature_list: list str of feature labels
"""
self.df = pd.read_csv(csvfile)
self.wordlist = list(self.df['word'])
self.sentences_index = self._load_sentence_word_indices()
self._data = self._load_data(asl, feature_list)
self._hmm_data = create_hmmlearn_data(self._data)
self.num_items = len(self._data)
self.num_sentences = len(self.sentences_index)
# def _load_data(self, asl, fn, feature_method):
def _load_data(self, asl, feature_list):
""" Consolidates sequenced feature data into a dictionary of words and creates answer list of words in order
of index used for dictionary keys
:param asl: ASLdata object
:param fn: str
filename of csv file containing word training data
:param feature_method: Feature function
:return: dict
"""
dict = {}
# for each word indexed in the DataFrame
for i in range(len(self.df)):
video = self.df.ix[i, 'video']
new_sequence = [] # list of sample dictionaries for a sequence
for frame in range(self.df.ix[i, 'startframe'], self.df.ix[i, 'endframe'] + 1):
vid_frame = video, frame
sample = [asl.df.ix[vid_frame][f] for f in feature_list]
if len(sample) > 0: # dont add if not found
new_sequence.append(sample)
if i in dict:
dict[i].append(new_sequence) # list of sequences
else:
dict[i] = [new_sequence]
return dict
def _load_sentence_word_indices(self):
""" create dict of video sentence numbers with list of word indices as values
:return: dict
{v0: [i0, i1, i2], v1: [i0, i1, i2], ... ,} where v# is video number and
i# is index to wordlist, ordered by sentence structure
"""
working_df = self.df.copy()
working_df['idx'] = working_df.index
working_df.sort_values(by='startframe', inplace=True)
p = working_df.pivot('video', 'startframe', 'idx')
p.fillna(-1, inplace=True)
p = p.transpose()
dict = {}
for v in p:
dict[v] = [int(i) for i in p[v] if i >= 0]
return dict
def get_all_sequences(self):
""" getter for entire db of items as series of sequences of feature lists for each frame
:return: dict
dictionary of lists of feature list sequence lists for each indexed item
{3: [[[87, 225], [87, 225], ...], [[88, 219], [88, 219], ...]]],
...}
"""
return self._data
def get_all_Xlengths(self):
""" getter for entire db of items as (X, lengths) tuple for use with hmmlearn library
:return: dict
dictionary of (X, lengths) tuple, where X is a numpy array of feature lists and lengths is
a list of lengths of sequences within X; should always have only one item in lengths
{3: (array([[ 87, 225],[ 87, 225], ... [ 87, 225, 62, 127], [ 87, 225, 65, 128]]), [14]),
...}
"""
return self._hmm_data
def get_item_sequences(self, item: int):
""" getter for single item series of sequences of feature lists for each frame
:param word: str
:return: list
lists of feature list sequence lists for given word
[[[87, 225], [87, 225], ...]]]
"""
return self._data[item]
def get_item_Xlengths(self, item: int):
""" getter for single item (X, lengths) tuple for use with hmmlearn library
:param word:
:return: (list, list)
(X, lengths) tuple, where X is a numpy array of feature lists and lengths is
a list of lengths of sequences within X; lengths should always contain one item
(array([[ 87, 225],[ 87, 225], ... [ 87, 225, 62, 127], [ 87, 225, 65, 128]]), [14])
"""
return self._hmm_data[item]
def combine_sequences(sequences):
'''
concatenates sequences and return tuple of the new list and lengths
:param sequences:
:return: (list, list)
'''
sequence_cat = []
sequence_lengths = []
# print("num of sequences in {} = {}".format(key, len(sequences)))
for sequence in sequences:
sequence_cat += sequence
num_frames = len(sequence)
sequence_lengths.append(num_frames)
return sequence_cat, sequence_lengths
def create_hmmlearn_data(dict):
seq_len_dict = {}
for key in dict:
sequences = dict[key]
sequence_cat, sequence_lengths = combine_sequences(sequences)
seq_len_dict[key] = np.array(sequence_cat), sequence_lengths
return seq_len_dict
if __name__ == '__main__':
asl = AslDb()
print(asl.df.ix[98, 1])