-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_old3.py
85 lines (67 loc) · 2.73 KB
/
train_old3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from keras.applications.vgg16 import VGG16
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
from keras.layers import Input, Flatten, Dense
from keras.models import Model
import numpy as np
from keras import backend as K
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
#Get back the convolutional part of a VGG network trained on ImageNet
model_vgg16_conv = VGG16(weights='imagenet', include_top=False)
model_vgg16_conv.summary()
#Create your own input format (here 3x200x200)
input = Input(shape=(3,200,200),name = 'image_input')
# Generate a model with all layers (with top)
vgg16 = VGG16(weights=None, include_top=True)
#Add a layer where input is the output of the second last layer
x = Dense(14951, activation='softmax', name='predictions')(vgg16.layers[-2].output)
#Then create the corresponding model
my_model = Model(input=vgg16.input, output=x)
my_model.summary()
my_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# dimensions of our images.
img_width, img_height = 224, 224
train_data_dir = 'training_images'
validation_data_dir = 'validation_images'
nb_train_samples = 2000
nb_validation_samples = 800
epochs = 50
batch_size = 16
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
monitor = EarlyStopping(monitor='val_loss', min_delta=1e-3, patience=5, verbose=0, mode='auto')
checkpointer = ModelCheckpoint(filepath="best_weights.hdf5", verbose=0, save_best_only=True) # save best model
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
my_model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_steps=nb_validation_samples // batch_size,
callbacks=[monitor,checkpointer],
validation_data=validation_generator)
my_model.load_weights('best_weights2.hdf5') # load weights from best model
my_model.save('save_model.h5')