-
Notifications
You must be signed in to change notification settings - Fork 101
/
train.py
123 lines (100 loc) · 4.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import copy
import pylab
import random
import numpy as np
from environment import Env
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
# 딥살사 인공신경망
class DeepSARSA(tf.keras.Model):
def __init__(self, action_size):
super(DeepSARSA, self).__init__()
self.fc1 = Dense(30, activation='relu')
self.fc2 = Dense(30, activation='relu')
self.fc_out = Dense(action_size)
def call(self, x):
x = self.fc1(x)
x = self.fc2(x)
q = self.fc_out(x)
return q
# 그리드월드 예제에서의 딥살사 에이전트
class DeepSARSAgent:
def __init__(self, state_size, action_size):
# 상태의 크기와 행동의 크기 정의
self.state_size = state_size
self.action_size = action_size
# 딥살사 하이퍼 파라메터
self.discount_factor = 0.99
self.learning_rate = 0.001
self.epsilon = 1.
self.epsilon_decay = .9999
self.epsilon_min = 0.01
self.model = DeepSARSA(self.action_size)
self.optimizer = Adam(lr=self.learning_rate)
# 입실론 탐욕 정책으로 행동 선택
def get_action(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
else:
q_values = self.model(state)
return np.argmax(q_values[0])
# <s, a, r, s', a'>의 샘플로부터 모델 업데이트
def train_model(self, state, action, reward, next_state, next_action, done):
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
# 학습 파라메터
model_params = self.model.trainable_variables
with tf.GradientTape() as tape:
tape.watch(model_params)
predict = self.model(state)[0]
one_hot_action = tf.one_hot([action], self.action_size)
predict = tf.reduce_sum(one_hot_action * predict, axis=1)
# done = True 일 경우 에피소드가 끝나서 다음 상태가 없음
next_q = self.model(next_state)[0][next_action]
target = reward + (1 - done) * self.discount_factor * next_q
# MSE 오류 함수 계산
loss = tf.reduce_mean(tf.square(target - predict))
# 오류함수를 줄이는 방향으로 모델 업데이트
grads = tape.gradient(loss, model_params)
self.optimizer.apply_gradients(zip(grads, model_params))
if __name__ == "__main__":
# 환경과 에이전트 생성
env = Env(render_speed=0.01)
state_size = 15
action_space = [0, 1, 2, 3, 4]
action_size = len(action_space)
agent = DeepSARSAgent(state_size, action_size)
scores, episodes = [], []
EPISODES = 1000
for e in range(EPISODES):
done = False
score = 0
# env 초기화
state = env.reset()
state = np.reshape(state, [1, state_size])
while not done:
# 현재 상태에 대한 행동 선택
action = agent.get_action(state)
# 선택한 행동으로 환경에서 한 타임스텝 진행 후 샘플 수집
next_state, reward, done = env.step(action)
next_state = np.reshape(next_state, [1, state_size])
next_action = agent.get_action(next_state)
# 샘플로 모델 학습
agent.train_model(state, action, reward, next_state,
next_action, done)
score += reward
state = next_state
if done:
# 에피소드마다 학습 결과 출력
print("episode: {:3d} | score: {:3d} | epsilon: {:.3f}".format(
e, score, agent.epsilon))
scores.append(score)
episodes.append(e)
pylab.plot(episodes, scores, 'b')
pylab.xlabel("episode")
pylab.ylabel("score")
pylab.savefig("./save_graph/graph.png")
# 100 에피소드마다 모델 저장
if e % 100 == 0:
agent.model.save_weights('save_model/model', save_format='tf')