-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.R
180 lines (155 loc) · 5.84 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
library(leaflet)
library(RColorBrewer)
library(scales)
library(lattice)
library(dplyr)
# Leaflet bindings are a bit slow; for now we'll just sample to compensate
set.seed(100)
zipdata <- allzips[sample.int(nrow(allzips), 10000),]
# By ordering by centile, we ensure that the (comparatively rare) SuperZIPs
# will be drawn last and thus be easier to see
zipdata <- zipdata[order(zipdata$centile),]
function(input, output, session) {
## Interactive Map ###########################################
# Create the map
output$map <- renderLeaflet({
leaflet() %>%
addTiles() %>%
setView(lng = -93.85, lat = 37.45, zoom = 4)
})
# A reactive expression that returns the set of zips that are
# in bounds right now
zipsInBounds <- reactive({
if (is.null(input$map_bounds))
return(zipdata[FALSE,])
bounds <- input$map_bounds
latRng <- range(bounds$north, bounds$south)
lngRng <- range(bounds$east, bounds$west)
subset(zipdata,
latitude >= latRng[1] & latitude <= latRng[2] &
longitude >= lngRng[1] & longitude <= lngRng[2])
})
# Precalculate the breaks we'll need for the two histograms
centileBreaks <- hist(plot = FALSE, allzips$centile, breaks = 20)$breaks
output$histCentile <- renderPlot({
# If no zipcodes are in view, don't plot
if (nrow(zipsInBounds()) == 0)
return(NULL)
hist(zipsInBounds()$centile,
breaks = centileBreaks,
main = "SuperZIP score (visible zips)",
xlab = "Percentile",
xlim = range(allzips$centile),
col = '#00DD00',
border = 'white')
})
output$scatterCollegeIncome <- renderPlot({
# If no zipcodes are in view, don't plot
if (nrow(zipsInBounds()) == 0)
return(NULL)
print(xyplot(income ~ college, data = zipsInBounds(), xlim = range(allzips$college), ylim = range(allzips$income)))
})
# This observer is responsible for maintaining the circles and legend,
# according to the variables the user has chosen to map to color and size.
observe({
colorBy <- input$color
sizeBy <- input$size
if (colorBy == "superzip") {
# Color and palette are treated specially in the "superzip" case, because
# the values are categorical instead of continuous.
colorData <- ifelse(zipdata$centile >= (100 - input$threshold), "yes", "no")
pal <- colorFactor("viridis", colorData)
} else {
colorData <- zipdata[[colorBy]]
pal <- colorBin("viridis", colorData, 7, pretty = FALSE)
}
if (sizeBy == "superzip") {
# Radius is treated specially in the "superzip" case.
radius <- ifelse(zipdata$centile >= (100 - input$threshold), 30000, 3000)
} else {
radius <- zipdata[[sizeBy]] / max(zipdata[[sizeBy]]) * 30000
}
leafletProxy("map", data = zipdata) %>%
clearShapes() %>%
addCircles(~longitude, ~latitude, radius=radius, layerId=~zipcode,
stroke=FALSE, fillOpacity=0.4, fillColor=pal(colorData)) %>%
addLegend("bottomleft", pal=pal, values=colorData, title=colorBy,
layerId="colorLegend")
})
# Show a popup at the given location
showZipcodePopup <- function(zipcode, lat, lng) {
selectedZip <- allzips[allzips$zipcode == zipcode,]
content <- as.character(tagList(
tags$h4("Score:", as.integer(selectedZip$centile)),
tags$strong(HTML(sprintf("%s, %s %s",
selectedZip$city.x, selectedZip$state.x, selectedZip$zipcode
))), tags$br(),
sprintf("Median household income: %s", dollar(selectedZip$income * 1000)), tags$br(),
sprintf("Percent of adults with BA: %s%%", as.integer(selectedZip$college)), tags$br(),
sprintf("Adult population: %s", selectedZip$adultpop)
))
leafletProxy("map") %>% addPopups(lng, lat, content, layerId = zipcode)
}
# When map is clicked, show a popup with city info
observe({
leafletProxy("map") %>% clearPopups()
event <- input$map_shape_click
if (is.null(event))
return()
isolate({
showZipcodePopup(event$id, event$lat, event$lng)
})
})
## Data Explorer ###########################################
observe({
cities <- if (is.null(input$states)) character(0) else {
filter(cleantable, State %in% input$states) %>%
`$`('City') %>%
unique() %>%
sort()
}
stillSelected <- isolate(input$cities[input$cities %in% cities])
updateSelectizeInput(session, "cities", choices = cities,
selected = stillSelected, server = TRUE)
})
observe({
zipcodes <- if (is.null(input$states)) character(0) else {
cleantable %>%
filter(State %in% input$states,
is.null(input$cities) | City %in% input$cities) %>%
`$`('Zipcode') %>%
unique() %>%
sort()
}
stillSelected <- isolate(input$zipcodes[input$zipcodes %in% zipcodes])
updateSelectizeInput(session, "zipcodes", choices = zipcodes,
selected = stillSelected, server = TRUE)
})
observe({
if (is.null(input$goto))
return()
isolate({
map <- leafletProxy("map")
map %>% clearPopups()
dist <- 0.5
zip <- input$goto$zip
lat <- input$goto$lat
lng <- input$goto$lng
showZipcodePopup(zip, lat, lng)
map %>% fitBounds(lng - dist, lat - dist, lng + dist, lat + dist)
})
})
output$ziptable <- DT::renderDataTable({
df <- cleantable %>%
filter(
Score >= input$minScore,
Score <= input$maxScore,
is.null(input$states) | State %in% input$states,
is.null(input$cities) | City %in% input$cities,
is.null(input$zipcodes) | Zipcode %in% input$zipcodes
) %>%
mutate(Action = paste('<a class="go-map" href="" data-lat="', Lat, '" data-long="', Long, '" data-zip="', Zipcode, '"><i class="fa fa-crosshairs"></i></a>', sep=""))
action <- DT::dataTableAjax(session, df, outputId = "ziptable")
DT::datatable(df, options = list(ajax = list(url = action)), escape = FALSE)
})
}