-
Notifications
You must be signed in to change notification settings - Fork 68
/
mColoring.cpp
59 lines (48 loc) · 1.34 KB
/
mColoring.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
// M - COLORING PROBLEM | BACKTRACKING
// Time Complexity : O(N ^ M)
// Space Complexity : O(N)
#include<bits/stdc++.h>
using namespace std;
bool isSafe(int node, int color[], bool graph[101][101], int n, int col) {
for (int k = 0; k < n; k++) {
if (k != node && graph[k][node] == 1 && color[k] == col) {
return false;
}
}
return true;
}
bool solve(int node, int color[], int m, int N, bool graph[101][101]) {
if (node == N) {
return true;
}
for (int i = 1; i <= m; i++) {
if (isSafe(node, color, graph, N, i)) {
color[node] = i;
if (solve(node + 1, color, m, N, graph)) return true;
color[node] = 0;
}
}
return false;
}
//Function to determine if graph can be coloured with at most M colours such
//that no two adjacent vertices of graph are coloured with same colour.
bool graphColoring(bool graph[101][101], int m, int N) {
int color[N] = {
0
};
if (solve(0, color, m, N, graph)) return true;
return false;
}
int main() {
int N = 4;
int m = 3;
bool graph[101][101];
memset(graph, false, sizeof graph);
// Edges are (0, 1), (1, 2), (2, 3), (3, 0), (0, 2)
graph[0][1] = 1; graph[1][0] = 1;
graph[1][2] = 1; graph[2][1] = 1;
graph[2][3] = 1; graph[3][2] = 1;
graph[3][0] = 1; graph[0][3] = 1;
graph[0][2] = 1; graph[2][0] = 1;
cout << graphColoring(graph, m, N);
}