-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtuner.js
275 lines (255 loc) · 8.34 KB
/
tuner.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// Copyright 2019 Raph Levien
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Computation and UI for the new interpolation-based curve families.
// Note: cut'n'paste from biparabola.js, maybe move to a utils file?
function solve_bisect(f, xmin = 0, xmax = 1) {
let smin = Math.sign(f(xmin));
if (smin == 0) { return xmin; }
let smax = Math.sign(f(xmax));
if (smax == 0) { return xmax; }
if (smin == smax) {
//console.log("solve_bisect: doesn't straddle solution");
return;
}
var x;
for (var i = 0; i < 30; i++) {
x = 0.5 * (xmin + xmax);
let s = Math.sign(f(x));
if (s == 0) { return x; }
if (s == smin) {
xmin = x;
} else {
xmax = x;
}
}
return x;
}
class TwoCubics {
// Argument is an array of 6 values. First and last are arm length.
// Middle 4 are coords of 2 interior points.
//
// The angles are implicit and need to be provided.
//
// Note: wouldn't be too hard to generalize to N cubics, but trying
// to stay focused.
constructor(a) {
this.a = a;
}
getCenterPt(th0, th1) {
let a0 = this.a[0];
let a1 = this.a[1];
let a2 = this.a[2];
let a3 = this.a[3];
let a4 = this.a[4];
let a5 = this.a[5];
let p1 = new Vec2(a0 * Math.cos(th0), a0 * Math.sin(th0));
let p2 = new Vec2(a1, a2);
let p4 = new Vec2(a3, a4);
let p5 = new Vec2(1 - a5 * Math.cos(th1), a5 * Math.sin(th1));
// Following code was trying to enforce G2 but had stability problems.
/*
let t = solve_bisect(t => {
let p3x = a1 + t * (a3 - a1);
let p3y = a2 + t * (a4 - a2);
let l = new CubicBez([0, 0, p1.x, p1.y, a1, a2, p3x, p3y]);
let r = new CubicBez([p3x, p3y, a3, a4, p5.x, p5.y, 1, 0]);
return l.curvature(1) - r.curvature(0);
}, 0.001, 0.999);
if (typeof t != "number") { t = 0.5 };
*/
let t = 0.5;
return new Vec2(a1 + t * (a3 - a1), a2 + t * (a4 - a2));
}
// Render to TwoParamCurve render style
render(th0, th1) {
let a0 = this.a[0];
let a1 = this.a[1];
let a2 = this.a[2];
let a3 = this.a[3];
let a4 = this.a[4];
let a5 = this.a[5];
let p1 = new Vec2(a0 * Math.cos(th0), a0 * Math.sin(th0));
let p2 = new Vec2(a1, a2);
let p4 = new Vec2(a3, a4);
let p5 = new Vec2(1 - a5 * Math.cos(th1), a5 * Math.sin(th1));
let p3 = this.getCenterPt(th0, th1);
return [p1, p2, p3, p4, p5];
}
// Get curvature at left point
atanCurvature(th0, th1) {
let coords = new Float64Array(8);
let a0 = this.a[0];
let p1 = new Vec2(a0 * Math.cos(th0), a0 * Math.sin(th0));
let p3 = this.getCenterPt(th0, th1);
coords[2] = p1.x;
coords[3] = p1.y;
coords[4] = this.a[1];
coords[5] = this.a[2];
coords[6] = p3.x;
coords[7] = p3.y;
let cb = new CubicBez(coords);
return cb.atanCurvature(0);
}
// Raise from a single cubic. Takes input either as a CubicBez object
// or in TwoParamCurve render style (the two interior points).
static raise(cb) {
if (!(cb instanceof CubicBez)) {
let coords = new Float64Array(8);
coords[2] = cb[0].x;
coords[3] = cb[0].y;
coords[4] = cb[1].x;
coords[5] = cb[1].y;
coords[6] = 1;
cb = new CubicBez(coords);
}
let l = cb.leftHalf();
let r = cb.rightHalf();
let a = new Float64Array(6);
a[0] = Math.hypot(l.c[2], l.c[3]);
a[1] = l.c[4];
a[2] = l.c[5];
a[3] = r.c[2];
a[4] = r.c[3];
a[5] = Math.hypot(1 - r.c[4], r.c[5]);
return new TwoCubics(a);
}
// Provide a default value. This is the correct answer for (0, 0) but
// very poor at other grid points. Perhaps useful for bootstrapping.
static default() {
let a = new Float64Array(6);
a[0] = 1.0/6;
a[1] = 1.0/3;
a[2] = 0;
a[3] = 2.0/3;
a[4] = 0;
a[5] = 1.0/6;
return new TwoCubics(a);
}
// Perform 180 degree rotation.
turn() {
let a = new Float64Array(6);
a[0] = this.a[5];
a[1] = 1 - this.a[3];
a[2] = -this.a[4];
a[3] = 1 - this.a[1];
a[4] = -this.a[2];
a[5] = this.a[0];
return new TwoCubics(a);
}
// Perform left-right mirror symmetry.
flip_horiz() {
let a = new Float64Array(6);
a[0] = this.a[5];
a[1] = 1 - this.a[3];
a[2] = this.a[4];
a[3] = 1 - this.a[1];
a[4] = this.a[2];
a[5] = this.a[0];
return new TwoCubics(a);
}
// Perform up-down mirror symmetry.
flip_vert() {
let a = new Float64Array(this.a);
a[2] = -a[2];
a[4] = -a[4];
return new TwoCubics(a);
}
}
// Compute actual modulo, not remainder.
function mymod(a, b) {
let r = a % b;
return r < 0 ? r + b : r;
}
class CurveGrid {
// There are (n + 1)^2 masters, each a TwoCubics, arranged as follows:
//
// . . . . 8
// . . . 3 7
// . . 0 2 6
// . . . 1 5
// . . . . 4
constructor(n, masters) {
this.n = n;
this.masters = masters;
}
// Get a master for a grid point, only for the right quadrant.
//
// In other words, only valid for 0 <= i <= n and -i <= j <= i
get_master_core(i, j) {
let ix = i * i + i + j;
return this.masters[ix];
}
// Get a master based on the grid point, applying symmetry.
get_master(i, j) {
i = mymod(i + this.n - 1, this.n * 2) - this.n + 1;
j = mymod(j + this.n - 1, this.n * 2) - this.n + 1;
if (i >= 0 && -i <= j && j <= i) {
return this.get_master_core(i, j);
} else if (j >= 0 && -j <= i && i <= j) {
return this.get_master_core(j, i).flip_horiz();
} else if (i <= 0 && i <= j && j <= -i) {
return this.get_master_core(-i, -j).flip_vert();
} else {
return this.get_master_core(-j, -i).turn();
}
}
// Get an interpolated curve.
//
// This is currently using bilinear interpolation for simplicity but we
// want to strongly consider bicubic for greater smoothness.
//
// Another possibility is to build "trigonometric polynomials" and evaluate
// those. These are smoother in a mathematical sense but I am concerned
// about non-locality.
get_interp(th0, th1) {
let i = th0 * 2 * this.n / Math.PI;
let j = th1 * 2 * this.n / Math.PI;
let i_int = Math.floor(i);
let j_int = Math.floor(j);
let i_frac = i - i_int;
let j_frac = j - j_int;
let m00 = this.get_master(i_int, j_int);
let m01 = this.get_master(i_int + 1, j_int);
let m10 = this.get_master(i_int, j_int + 1);
let m11 = this.get_master(i_int + 1, j_int + 1);
let a = new Float64Array(6);
for (let k = 0; k < 6; k++) {
let a00 = m00.a[k];
let a01 = m01.a[k];
let a10 = m10.a[k];
let a11 = m11.a[k];
let a0 = a00 + i_frac * (a01 - a00);
let a1 = a10 + i_frac * (a11 - a10);
a[k] = a0 + j_frac * (a1 - a0);
}
return new TwoCubics(a);
}
// Return a json object (not a string) serializing the state.
toJson() {
let result = {};
result["n"] = this.n;
let masters = [];
for (let master of this.masters) {
let a = [];
for (let i = 0; i < master.a.length; i++) {
a.push(master.a[i]);
}
masters.push(a);
}
result["masters"] = masters;
return result;
}
// Instantiate from a json object (not a string).
static fromJson(json) {
let n = json["n"];
let masters = [];
for (let master of json["masters"]) {
masters.push(new TwoCubics(master));
}
return new CurveGrid(n, masters);
}
}