-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathkblend.py
93 lines (80 loc) · 2.65 KB
/
kblend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright 2018 Raph Levien
# Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
# http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
# <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
# option. This file may not be copied, modified, or distributed
# except according to those terms.
import math
from numpy.polynomial.polynomial import Polynomial
def hermite5(x0, x1, v0, v1, a0, a1):
return Polynomial([x0,
v0,
0.5 * a0,
-10 * x0 + 10 * x1 - 6 * v0 - 4 * v1 - 1.5 * a0 + 0.5 * a1,
15 * x0 - 15 * x1 + 8 * v0 + 7 * v1 + 1.5 * a0 - a1,
-6 * x0 + 6 * x1 - 3 * v0 - 3 * v1 + -.5 * a0 + 0.5 * a1])
# A quarter circle with a fixed curvature (1 is normal)
def quarter_k(k):
v = math.pi/2
return (hermite5(0, 1, v, 0, 0, -k * v**2),
hermite5(1, 0, 0, -v, -k * v**2, 0))
def plot_poly(p, x, y, xu, yu, xv, yv):
n = 5
ds = 1.0 / (3 * n)
dp0 = p[0].deriv()
dp1 = p[1].deriv()
for i in range(n):
t0 = i * (1.0 / n)
t1 = (i + 1) * (1.0 / n)
u0 = p[0](t0)
v0 = p[1](t0)
u1 = u0 + dp0(t0) * ds
v1 = v0 + dp1(t0) * ds
u3 = p[0](t1)
v3 = p[1](t1)
u2 = u3 - dp0(t1) * ds
v2 = v3 - dp1(t1) * ds
print(x + xu * u1 + xv * v1, y + yu * u1 + yv * v1)
print(x + xu * u2 + xv * v2, y + yu * u2 + yv * v2)
print(x + xu * u3 + xv * v3, y + yu * u3 + yv * v3, 'curveto')
def plot_ellipsish(x, y, s, a, k1, k2):
p1 = quarter_k(k1 * (1 - a))
p2 = quarter_k(k2 * (1 + a))
print(x + s * a, y + s, 'moveto')
plot_poly(p1, x + s * a, y + s * a, s * (1 - a), 0, 0, s * (1 - a))
plot_poly(p2, x - s * a, y + s * a, 0, -s * (1 + a), s * (1 + a), 0)
plot_poly(p1, x - s * a, y - s * a, -s * (1 - a), 0, 0, -s * (1 - a))
plot_poly(p2, x + s * a, y - s * a, 0, s * (1 + a), -s * (1 + a), 0)
print('closepath stroke')
def plot_row(row, name, blendf):
y = 700 - 72 * row
print(50, y + 27, 'moveto (' + name + ') show')
for i in range(10):
a = 1 - (1 - i * .1) ** 2
x = 72 + 50 * i
k1 = 1 / (1 - a)
k2 = 1 / (1 + a)
if blendf != None:
k = blendf(k1, k2)
k1 = k
k2 = k
plot_ellipsish(x, y, 22, a, k1, k2)
def arith_mean(k1, k2):
return 0.5 * (k1 + k2)
def harmonic_mean(k1, k2):
return 2 / (1/k1 + 1/k2)
def geometric_mean(k1, k2):
return math.sqrt(k1 * k2)
def atan_mean(k1, k2):
return math.tan(0.5 * (math.atan(k1) + math.atan(k2)))
def print_chart():
print('%!PS-Adobe-3.0')
print('/Times-Roman 12 selectfont')
plot_row(0, 'none', None)
plot_row(1, 'minimum', min)
plot_row(2, 'harmonic mean', harmonic_mean)
plot_row(3, 'atan mean', atan_mean)
plot_row(4, 'geometric mean', geometric_mean)
plot_row(7, 'arithmetic mean', arith_mean)
print('showpage')
print_chart()