forked from devendrachaplot/DeepRL-Grounding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
107 lines (86 loc) · 3.81 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
def normalized_columns_initializer(weights, std=1.0):
out = torch.randn(weights.size())
out *= std / torch.sqrt(out.pow(2).sum(1, keepdim=True).expand_as(out))
return out
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
weight_shape = list(m.weight.data.size())
fan_in = np.prod(weight_shape[1:4])
fan_out = np.prod(weight_shape[2:4]) * weight_shape[0]
w_bound = np.sqrt(6. / (fan_in + fan_out))
m.weight.data.uniform_(-w_bound, w_bound)
m.bias.data.fill_(0)
elif classname.find('Linear') != -1:
weight_shape = list(m.weight.data.size())
fan_in = weight_shape[1]
fan_out = weight_shape[0]
w_bound = np.sqrt(6. / (fan_in + fan_out))
m.weight.data.uniform_(-w_bound, w_bound)
m.bias.data.fill_(0)
class A3C_LSTM_GA(torch.nn.Module):
def __init__(self, args):
super(A3C_LSTM_GA, self).__init__()
# Image Processing
self.conv1 = nn.Conv2d(3, 128, kernel_size=8, stride=4)
self.conv2 = nn.Conv2d(128, 64, kernel_size=4, stride=2)
self.conv3 = nn.Conv2d(64, 64, kernel_size=4, stride=2)
# Instruction Processing
self.gru_hidden_size = 256
self.input_size = args.input_size
self.embedding = nn.Embedding(self.input_size, 32)
self.gru = nn.GRU(32, self.gru_hidden_size)
# Gated-Attention layers
self.attn_linear = nn.Linear(self.gru_hidden_size, 64)
# Time embedding layer, helps in stabilizing value prediction
self.time_emb_dim = 32
self.time_emb_layer = nn.Embedding(
args.max_episode_length+1,
self.time_emb_dim)
# A3C-LSTM layers
self.linear = nn.Linear(64 * 8 * 17, 256)
self.lstm = nn.LSTMCell(256, 256)
self.critic_linear = nn.Linear(256 + self.time_emb_dim, 1)
self.actor_linear = nn.Linear(256 + self.time_emb_dim, 3)
# Initializing weights
self.apply(weights_init)
self.actor_linear.weight.data = normalized_columns_initializer(
self.actor_linear.weight.data, 0.01)
self.actor_linear.bias.data.fill_(0)
self.critic_linear.weight.data = normalized_columns_initializer(
self.critic_linear.weight.data, 1.0)
self.critic_linear.bias.data.fill_(0)
self.lstm.bias_ih.data.fill_(0)
self.lstm.bias_hh.data.fill_(0)
self.train()
def forward(self, inputs):
x, input_inst, (tx, hx, cx) = inputs
# Get the image representation
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x_image_rep = F.relu(self.conv3(x))
# Get the instruction representation
encoder_hidden = Variable(torch.zeros(1, 1, self.gru_hidden_size))
for i in range(input_inst.data.size(1)):
word_embedding = self.embedding(input_inst[0, i]).unsqueeze(0)
_, encoder_hidden = self.gru(word_embedding, encoder_hidden)
x_instr_rep = encoder_hidden.view(encoder_hidden.size(1), -1)
# Get the attention vector from the instruction representation
x_attention = F.sigmoid(self.attn_linear(x_instr_rep))
# Gated-Attention
x_attention = x_attention.unsqueeze(2).unsqueeze(3)
x_attention = x_attention.expand(1, 64, 8, 17)
assert x_image_rep.size() == x_attention.size()
x = x_image_rep*x_attention
x = x.view(x.size(0), -1)
# A3C-LSTM
x = F.relu(self.linear(x))
hx, cx = self.lstm(x, (hx, cx))
time_emb = self.time_emb_layer(tx)
x = torch.cat((hx, time_emb.view(-1, self.time_emb_dim)), 1)
return self.critic_linear(x), self.actor_linear(x), (hx, cx)