-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_video_face_detect.py
76 lines (64 loc) · 2.81 KB
/
run_video_face_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""
This code uses the pytorch model to detect faces from live video or camera.
"""
import sys
import cv2
from vision.ssd.config.fd_config import define_img_size
input_img_size = 320 # define input size ,default optional(128/160/320/480/640/1280)
define_img_size(input_img_size) # must put define_img_size() before 'import create_mb_tiny_fd, create_mb_tiny_fd_predictor'
from vision.ssd.mb_tiny_fd import create_mb_tiny_fd, create_mb_tiny_fd_predictor
from vision.ssd.mb_tiny_RFB_fd import create_Mb_Tiny_RFB_fd, create_Mb_Tiny_RFB_fd_predictor
from vision.utils.misc import Timer
label_path = "./models/voc-model-labels.txt"
# net_type = "mb_tiny_fd" # inference faster,lower precision
net_type = "mb_tiny_RFB_fd" # inference lower,higher precision
cap = cv2.VideoCapture("/home/linzai/Videos/video/16_4.MP4") # capture from video
# cap = cv2.VideoCapture(0) # capture from camera
class_names = [name.strip() for name in open(label_path).readlines()]
num_classes = len(class_names)
test_device = "cuda:0"
candidate_size = 500
threshold = 0.7
if net_type == 'mb_tiny_fd':
model_path = "models/pretrained/Mb_Tiny_FD_train_input_320.pth"
net = create_mb_tiny_fd(len(class_names), is_test=True, device=test_device)
predictor = create_mb_tiny_fd_predictor(net, candidate_size=candidate_size, device=test_device)
elif net_type == 'mb_tiny_RFB_fd':
model_path = "models/pretrained/Mb_Tiny_RFB_FD_train_input_320.pth"
# model_path = "models/pretrained/Mb_Tiny_RFB_FD_train_input_640.pth"
net = create_Mb_Tiny_RFB_fd(len(class_names), is_test=True, device=test_device)
predictor = create_Mb_Tiny_RFB_fd_predictor(net, candidate_size=candidate_size, device=test_device)
else:
print("The net type is wrong!")
sys.exit(1)
net.load(model_path)
timer = Timer()
sum = 0
while True:
ret, orig_image = cap.read()
if orig_image is None:
print("end")
break
image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
timer.start()
boxes, labels, probs = predictor.predict(image, candidate_size / 2, threshold)
interval = timer.end()
print('Time: {:.6f}s, Detect Objects: {:d}.'.format(interval, labels.size(0)))
for i in range(boxes.size(0)):
box = boxes[i, :]
label = f" {probs[i]:.2f}"
cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 4)
cv2.putText(orig_image, label,
(box[0], box[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.5, # font scale
(0, 0, 255),
2) # line type
orig_image = cv2.resize(orig_image, None, None, fx=0.8, fy=0.8)
sum += boxes.size(0)
cv2.imshow('annotated', orig_image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
print("all face num:{}".format(sum))