-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmodel3.py
231 lines (192 loc) · 10.5 KB
/
model3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright Contributors to the Pyro project.
# SPDX-License-Identifier: Apache-2.0
"""
Middle-out Model
================
This example model illustrates how to use M5Data class to aggregate,
disaggregate data or prediction at each aggregation levels.
Using the middle-out approach in [1], we first construct a model to predict
the aggregated sales across stores and departments. Then we will distribute
the aggregated prediction to each product based on its total sales during
the last 28 days.
**References**
1. Rob J Hyndman and George Athanasopoulos (2018), "Forecasting: Principles and Practice",
(https://otexts.com/fpp2/middle-out.html)
"""
import argparse
import os
import pickle
import numpy as np
import pyro
import pyro.distributions as dist
import torch
from pyro.contrib.forecast import ForecastingModel, Forecaster
from pyro.ops.tensor_utils import periodic_repeat, periodic_features
from evaluate import get_metric_scale, m5_backtest
from util import M5Data
RESULTS = os.path.join(os.path.dirname(os.path.abspath(__file__)), "results")
RESULTS = os.environ.get("PYRO_M5_RESULTS", RESULTS)
if not os.path.exists(RESULTS):
os.makedirs(RESULTS)
# We will use a model similar to the one defined in `model1.py`. But instead of working
# with the top level data, we will use 70 timeseries at store+department level here.
class Model(ForecastingModel):
def model(self, zero_data, covariates):
num_stores, num_depts, duration, one = zero_data.shape
time, feature = covariates[..., :1], covariates[..., 1:]
store_plate = pyro.plate("store", num_stores, dim=-3)
dept_plate = pyro.plate("dept", num_depts, dim=-2)
day_of_week_plate = pyro.plate("day_of_week", 7, dim=-1)
with dept_plate, store_plate:
bias = pyro.sample("bias", dist.Normal(0, 10).expand([1]).to_event(1))
trend_coef = pyro.sample("trend", dist.LogNormal(-1, 1).expand([1]).to_event(1))
trend = trend_coef * time
# set prior of weights of the remaining covariates
weight = pyro.sample("weight",
dist.Normal(0, 1).expand([1, feature.size(-1)]).to_event(2))
regressor = weight.matmul(feature.unsqueeze(-1)).squeeze(-1)
# encode weekly seasonality
with day_of_week_plate:
seasonal = pyro.sample("seasonal", dist.Normal(0, 1).expand([1]).to_event(1))
seasonal = periodic_repeat(seasonal, duration, dim=-2)
noise_scale = pyro.sample("noise_scale", dist.LogNormal(-1, 1).expand([1]).to_event(1))
prediction = bias + trend + seasonal + regressor
dof = pyro.sample("dof", dist.Uniform(1, 10).expand([1]).to_event(1))
noise_dist = dist.StudentT(dof, zero_data, noise_scale)
self.predict(noise_dist, prediction)
def main(args):
m5 = M5Data()
# get aggregated sales at store+dept level
level = ["store_id", "dept_id"]
data = m5.get_aggregated_sales(level)
data = data.reshape(m5.num_stores, m5.num_depts, m5.num_train_days, 1)
# each department at each store has different scales; instead of
# using log transform as in `model1.py`, we will scale those timeseries down
# using the same scale of WSPL evaluation metric. Please refer to
# evaluation section of M5 guideline for more information about scale.
scale = get_metric_scale("pl", data).unsqueeze(-1).unsqueeze(-1)
data = data / scale
T0 = 0
T2 = data.size(-2) + 28 # end + submission-interval
T1 = T2 - 28
time = torch.arange(float(T2), device="cpu") / 365
covariates = torch.cat([
time.unsqueeze(-1),
# The follow code creates yearly features so we can learn yearly
# pattern from the dataset.
periodic_features(T2, 365.25, 7)
], dim=-1)
if args.cuda:
data = data.cuda()
covariates = covariates.cuda()
scale = scale.cuda()
torch.set_default_tensor_type(torch.cuda.FloatTensor)
forecaster_options = {
"learning_rate": args.learning_rate,
"learning_rate_decay": args.learning_rate_decay,
"clip_norm": args.clip_norm,
"num_steps": args.num_steps,
"log_every": args.log_every,
}
def transform(pred, truth):
# note that our pred/truth are results at store+dept level;
# we need to aggregate them to higher aggregation levels
# to verify if the result at higher aggregative levels is still good
pred, truth = (pred.clamp(min=0) * scale).cpu(), (truth * scale).cpu()
num_samples, duration = pred.size(0), pred.size(-2)
# Note that the method `m5.aggregate_samples` only aggregates non-aggregated
# timeseries to higher levels, but we have timeseries at the middle store+dept
# level. So we assume the all items in each department at each store have the
# same sales, disaggregate the timeseries at store+dept level to the
# non-aggregated level. Then aggretates the result to any higher aggregation level.
num_items_by_dept = torch.tensor(m5.num_items_by_dept, device="cpu")
pred = pred / num_items_by_dept.unsqueeze(-1).unsqueeze(-1)
non_agg_pred = pred.repeat_interleave(num_items_by_dept, dim=-3)
non_agg_pred = non_agg_pred.reshape(num_samples, -1, duration)
# note that store+dept is the fourth level from bottom up.
agg_pred = m5.aggregate_samples(non_agg_pred, *m5.aggregation_levels[:-3])
# similarly, we apply the same procedure for truth data
truth = truth / num_items_by_dept.unsqueeze(-1).unsqueeze(-1)
non_agg_truth = truth.repeat_interleave(num_items_by_dept, dim=-3)
non_agg_truth = non_agg_truth.reshape(1, -1, duration)
agg_truth = m5.aggregate_samples(non_agg_truth, *m5.aggregation_levels[:-3]).squeeze(0)
return agg_pred.unsqueeze(-1), agg_truth.unsqueeze(-1)
if args.submit:
pyro.set_rng_seed(args.seed)
print("Training...")
forecaster = Forecaster(Model(), data[..., T0:T1, :], covariates[T0:T1],
**forecaster_options)
print("Forecasting...")
samples = forecaster(data[..., T0:T1, :], covariates[T0:T2],
num_samples=1000, batch_size=10)
samples = samples.clamp(min=0) * scale
# Compute the ratio of prediction w.r.t. the sales of last 28 days
# first, we get the total sales of each department at each store in the last 28 days
dept_store_sales = m5.get_aggregated_sales(level)[:, -28:].sum(-1)
dept_store_sales = dept_store_sales.reshape(m5.num_stores, m5.num_depts)
# num_items_by_dept tells us how many items in each department
num_items_by_dept = torch.tensor(m5.num_items_by_dept)
dept_store_sales = dept_store_sales.repeat_interleave(num_items_by_dept, dim=-1)
# get the sales at the lowest level: store+item (this is the non-aggregated level)
sales_last28 = m5.get_aggregated_sales(["store_id", "item_id"])[:, -28:].sum(-1)
proportion = sales_last28 / dept_store_sales.reshape(-1)
# after calculate the ratio, we disaggregate prediction to the bottom level
samples = samples.squeeze(-1).repeat_interleave(num_items_by_dept, dim=-2)
samples = samples.reshape(-1, m5.num_timeseries, 28)
non_agg_samples = torch.poisson(samples * proportion.unsqueeze(-1))
# aggregate the result to all aggregation levels
agg_samples = m5.aggregate_samples(non_agg_samples, *m5.aggregation_levels)
# cast to numpy because pyro quantile implementation is memory hungry
print("Calculate quantiles...")
q = np.quantile(agg_samples.numpy(), m5.quantiles, axis=0)
print("Make uncertainty submission...")
filename, ext = os.path.splitext(args.output_file)
m5.make_uncertainty_submission(filename + "_uncertainty" + ext, q, float_format='%.3f')
else:
# calculate weight of each timeseries higher or equal to store+department level
weight = m5.get_aggregated_ma_dollar_sales(m5.aggregation_levels[-1]).cpu()
weight = weight / weight.sum(0, keepdim=True)
agg_weight = m5.aggregate_samples(weight.unsqueeze(0), *m5.aggregation_levels[:-3])
agg_weight = agg_weight.squeeze(0)
min_train_window = T1 - T0 - args.test_window - (args.num_windows - 1) * args.stride
print("Backtesting with skip window {}...".format(T0))
windows = m5_backtest(data, covariates[:T1], Model,
weight=agg_weight,
skip_window=T0,
transform=transform,
min_train_window=min_train_window,
test_window=args.test_window,
stride=args.stride,
forecaster_options=forecaster_options,
num_samples=1000,
batch_size=10,
seed=args.seed)
with open(args.output_file, "wb") as f:
pickle.dump(windows, f)
for name in ["ws_rmse", "ws_pl"]:
values = torch.tensor([w[name] for w in windows])
print("{} = {:0.3g} +- {:0.2g}".format(name, values.mean(), values.std()))
if __name__ == "__main__":
assert pyro.__version__ >= "1.3.0"
parser = argparse.ArgumentParser(description="Univariate M5 daily forecasting")
parser.add_argument("--num-windows", default=3, type=int)
parser.add_argument("--test-window", default=28, type=int)
parser.add_argument("-s", "--stride", default=35, type=int)
parser.add_argument("-n", "--num-steps", default=2001, type=int)
parser.add_argument("-lr", "--learning-rate", default=0.1, type=float)
parser.add_argument("--learning-rate-decay", default=0.1, type=float)
parser.add_argument("--clip-norm", default=10., type=float)
parser.add_argument("--log-every", default=100, type=int)
parser.add_argument("--seed", default=1, type=int)
parser.add_argument("-o", "--output-file", default="", type=str)
parser.add_argument("--submit", action="store_true", default=False)
parser.add_argument("--cuda", action="store_true", default=False)
args = parser.parse_args()
if args.cuda and not torch.cuda.is_available():
args.cuda = False
if args.cuda:
torch.set_default_tensor_type(torch.cuda.FloatTensor)
if args.output_file == "":
args.output_file = os.path.basename(__file__)[:-3] + (".csv" if args.submit else ".pkl")
args.output_file = os.path.join(RESULTS, args.output_file)
main(args)