-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathcifar10_data.py
38 lines (31 loc) · 1.07 KB
/
cifar10_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""
cifar-10 dataset, with support for random labels
"""
import numpy as np
import torch
import torchvision.datasets as datasets
class CIFAR10RandomLabels(datasets.CIFAR10):
"""CIFAR10 dataset, with support for randomly corrupt labels.
Params
------
corrupt_prob: float
Default 0.0. The probability of a label being replaced with
random label.
num_classes: int
Default 10. The number of classes in the dataset.
"""
def __init__(self, corrupt_prob=0.0, num_classes=10, **kwargs):
super(CIFAR10RandomLabels, self).__init__(**kwargs)
self.n_classes = num_classes
if corrupt_prob > 0:
self.corrupt_labels(corrupt_prob)
def corrupt_labels(self, corrupt_prob):
labels = np.array(self.targets)
np.random.seed(12345)
mask = np.random.rand(len(labels)) <= corrupt_prob
rnd_labels = np.random.choice(self.n_classes, mask.sum())
labels[mask] = rnd_labels
# we need to explicitly cast the labels from npy.int64 to
# builtin int type, otherwise pytorch will fail...
labels = [int(x) for x in labels]
self.targets = labels