-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathnoise_simulation.m
202 lines (176 loc) · 6.86 KB
/
noise_simulation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
% Script to test effect of noise on estimates of tau_a and tau_c.
%
% Seebany Datta-Barua
% 22 Jan 2017
clear
close all
tic
% Your variables are:
%
% init_t_utc rcvr_op sitenum_op xdata_PRN
% prn signal tlim
% prn = 23
% sitenum_op =
%
% 'IIT-1'
% 'IIT-3'
% 'IIT-11'
% 'IIT-13'
% 'IIT-15'
load('../HRdataforDrBust/Bust_PRN23_2013_342');
for i = 1:size(sitenum_op)
rxdata = xdata_PRN{i};
t(:, i) = rxdata(:, 1);
phi(:, i) = rxdata(:, 3);
end
% Generate different ensemble members.
% Number of ensemble members in the simulation.
num_ensemble = 100;
noise = randn(numel(phi(:, 1)), numel(sitenum_op), num_ensemble);
t0 = min(t(1, :));
% figure(1)
% subplot(211)
% % First plot data without noise
% plot(t-t0,phi)
% legend(sitenum_op)
% title('Unaltered phase data from SAGA to PRN 23')
% ylabel('Detrended filtered 100 Hz phase [rad]')
%
% % Second plot is data with noise.
% subplot(212)
% plot(t-t0,phi+noise(:,:,1))
% title('One ensemble member of SAGA data with added noise')
% xlabel(['Seconds since 03:' num2str(2620/60) ' UT'])
% ylabel('Detrended filtered 100 Hz phase [rad]')
%
for k = 1:num_ensemble
% Compute auto- and cross-correlations.
rho = xcorr(phi);
rhon = xcorr(phi+noise(:, :, k));
% The columns of rho that contain auto-correlations.
num_rxs = numel(sitenum_op);
acorrcols = ([1:num_rxs] - 1) * num_rxs + ([1:num_rxs] - 1) + 1;
maxrhoii = max(rho(:, acorrcols));
% Noisy version
maxrhoiin = max(rhon(:, acorrcols));
% Initialize sample observations
y = [];
yn = [];
diffy = [];
for i = 1:1 %numel(sitenum_op)-1
tau = [-(t(end:-1:1, i) - t0); t(2:end, i) - t0];
% for j = acorrcols(i)+1:acorrcols(i+1)
for j = i + 1:numel(sitenum_op)
% j
normfactor = sqrt(maxrhoii(i)*maxrhoii(j));
% Noisy version
normfactorn = sqrt(maxrhoiin(i)*maxrhoiin(j));
% Normalize the autocorr and xcorr functions.
normacorr = rho(:, acorrcols(i)) / normfactor;
normxcorr = rho(:, acorrcols(i)+j-1) / normfactor;
% Noisy. Not sure it's right to normalize by the noise-free
% version but the noisy version has a spike of almost double the
% true peak value.
normacorrn = rhon(:, acorrcols(i)) / normfactor;
normxcorrn = rhon(:, acorrcols(i)+j-1) / normfactor;
% Pick one side of the main lobe above rho_cutoff.
rho_cutoff = 0.6;
arows = find(normacorr > rho_cutoff & tau >= 0);
xrows = find(normxcorr > rho_cutoff & ...
tau >= tau(find(normxcorr == max(normxcorr))));
shortacorr = normacorr(arows);
shortatau = tau(arows);
shortxcorr = normxcorr(xrows);
shortxtau = tau(xrows);
%%% Noisy version
% Pick one side of the main lobe above rho_cutoff.
rho_cutoffn = rho_cutoff;
arowsn = find(normacorrn > rho_cutoffn & tau >= 0);
xrowsn = find(normxcorrn > rho_cutoffn & ...
tau >= tau(find(normxcorrn == max(normxcorrn))));
shortacorrn = normacorrn(arowsn);
shortataun = tau(arowsn);
shortxcorrn = normxcorrn(xrowsn);
shortxtaun = tau(xrowsn);
figure(2)
% First plot is one set of autocorrelations, noisefree and noisy.
subplot(211)
plot(tau, normacorrn, 'g', tau, normacorr, 'b') %, ...
% tau(arows), shortacorr, 'r', tau(arowsn), shortacorrn,'c')
legend('noise-added', 'raw data') %,'raw, above \rho_c', ...
title(['Auto-correlations']) % of data from ' sitenum_op{i}])
% legend('raw data','noise-added', 'raw, above \rho_c', ...
% 'noisy, above \rho_c')
% title(['Auto-correlation of data from ' sitenum_op{i}])
% ax = axis;
% axis([-4 4 ax(3) ax(4)])
hold on
% Second plot is one pair of cross-correlations, noisefree & noisy.
figure(2)
subplot(212)
plot(tau, normxcorrn, 'g', tau, normxcorr, 'b') %,...
% tau(xrows), shortxcorr, 'r', tau(xrowsn), shortxcorrn,'c')
legend('noise-added', 'raw data') %,'raw, above \rho_c', ...
title(['Cross-correlations']) % of data from ' sitenum_op{i}])
% legend('raw data','noise-added', 'raw, above \rho_c', ...
% 'noisy, above \rho_c')
% title(['Cross-correlation of data from ' sitenum_op{i} ' and ' ...
% sitenum_op{j}])
% ax = axis;
% axis([-4 4 ax(3) ax(4)])
hold on
% Repeat matrix of each value of cross-correlation.
xcorrmat = repmat(shortxcorr', size(shortacorr));
% Difference from the autocorrelations.
acorrmat = repmat(shortacorr, size(shortxcorr'));
absdiffmat = abs(xcorrmat-acorrmat);
[minrows, mincols] = find(absdiffmat == repmat(min(absdiffmat), ...
size(absdiffmat, 1), 1));
tau_a = shortatau(minrows);
tau_x = shortxtau;
% Repeat matrix of each value of cross-correlation.
xcorrmatn = repmat(shortxcorrn', size(shortacorrn));
% Difference from the autocorrelations.
acorrmatn = repmat(shortacorrn, size(shortxcorrn'));
absdiffmatn = abs(xcorrmatn-acorrmatn);
[minrowsn, mincolsn] = find(absdiffmatn == repmat(min(absdiffmatn), ...
size(absdiffmatn, 1), 1));
tau_an = shortataun(minrowsn);
tau_xn = shortxtaun;
% Observations are differences of the squares.
% Truncate differences.
len = min(numel(tau_an), numel(tau_a));
diffy = [diffy; tau_an(1:len).^2 - tau_xn(1:len).^2, ...
- (tau_a(1:len).^2 - tau_x(1:len).^2)];
y = [y; tau_a.^2 - tau_x.^2];
yn = [yn; tau_an(1:len).^2 - tau_xn(1:len).^2];
figure(4)
plot(diffy)
hold on
end
end
figure(3)
hold on
plot(yn, 'g')
title('Observation array')
% legend('noise-free','noisy')
ensemble_yn{k} = yn;
end
%Complete Fig 3 with the noise-free y.
figure(3)
plot(y)
xlabel('Element number')
ylabel('\tau_a^2 - \tau_c^2 [s]')
figure(2)
subplot(212)
ax = axis;
axis([-4, 4, ax(3), ax(4)])
xlabel('Lag \tau [s]')
grid on
ylabel('Normalized auto-correlation')
subplot(211)
grid on
ax = axis;
axis([-4, 4, ax(3), ax(4)])
ylabel('Normalized cross-correlation')
toc