-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
254 lines (222 loc) · 11.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import jsonlines
import json
import random
import logging
import argparse
from os.path import join, dirname, basename
import numpy as np
from modeling.naive_fuser import MMFusionTransformer
from modeling.mlp_linear_classifier import MLPClassifier
import torch
import os
import sys
sys.path.append('preprocessing')
from scorer.subtask_1 import evaluate
from format_checker.subtask_1 import check_format
from checkthat_dataset import MMDataset, MMTestDataset, collate_func
from torch.utils.data import DataLoader
from trainer.trainer import CustomTrainer
import wandb
from transformers import Trainer, EarlyStoppingCallback, TrainingArguments, IntervalStrategy
from sklearn.metrics import accuracy_score
random.seed(1234)
ROOT_DIR = dirname(dirname(__file__))
logging.basicConfig(format='%(levelname)s : %(message)s', level=logging.INFO)
def compute_metrics(p):
pred, labels = p
pred = np.greater(pred, 0.25).squeeze()
accuracy = accuracy_score(y_true=labels, y_pred=pred)
wandb.log({"val accuracy": accuracy})
return {"accuracy": accuracy,}
def train_qformer(data_dir, split, train_fpath, test_fpath, args):
"""
@param data_dir:
@param split:
@param train_fpath:
@param test_fpath:
@param results_fpath: results/
@param model_id:
"""
training_args = TrainingArguments(
evaluation_strategy=IntervalStrategy.STEPS, # "steps"
eval_steps=100, # Evaluation and Save happens every 50 steps
output_dir='./checkpoints',
num_train_epochs=5,
learning_rate=args.lr,
per_device_train_batch_size=args.train_batch_size,
per_device_eval_batch_size=64,
warmup_steps=10,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
metric_for_best_model='accuracy',
load_best_model_at_end=True
)
tr_feats = json.load(open(join(data_dir, "features", "merge_feats.json"))) # format {"imgfeats":{"tweetid":768d}}
te_feats = json.load(open(join(data_dir, "features", "%s_feats.json"%(split))))
_train_id_labels = [[obj["tweet_id"], obj["class_label"]] for obj in jsonlines.open(join(data_dir, train_fpath))] # format: [["tweetid": "Yes"]]
if "dev" in test_fpath:
test_id_labels = [[obj["tweet_id"], obj["class_label"]] for obj in jsonlines.open(join(data_dir, test_fpath))]
else:
raise ValueError("dev not in validation set name")
tr_img_feats = []
tr_text_feats = []
tr_multi_feats = []
train_id_labels = []
for obj in _train_id_labels:
try:
tr_img_feat = tr_feats["imgfeats"][obj[0]]
tr_text_feat = tr_feats["textfeats"][obj[0]]
tr_multi_feat = tr_feats["multifeats"][obj[0]]
except KeyError:
continue
else:
tr_multi_feats.append(tr_multi_feat)
tr_img_feats.append(tr_img_feat)
tr_text_feats.append(tr_text_feat)
train_id_labels.append(obj)
tr_img_feats = np.array(tr_img_feats)
tr_text_feats = np.array(tr_text_feats)
tr_multi_feats = np.array(tr_multi_feats)
tr_img_feat = torch.from_numpy(tr_img_feats).float()
# tr_img_feat = torch.randn_like(tr_img_feat) # replace image with random noise for ablation study
tr_text_feat = torch.from_numpy(tr_text_feats).float()
# tr_text_feat = torch.randn_like(tr_text_feat) # replace text with random noise for ablation study
tr_multi_feat = torch.from_numpy(tr_multi_feats).float()
train_dataset = MMDataset(tr_img_feat, tr_text_feat, tr_multi_feat, train_id_labels)
# 820 / 2356
# save valid outputs
val_img_feats = [te_feats["imgfeats"][obj[0]] for obj in test_id_labels]
val_img_feats = np.array(val_img_feats)
val_img_feats = torch.from_numpy(val_img_feats).float()
val_text_feats = [te_feats["textfeats"][obj[0]] for obj in test_id_labels]
val_text_feats = np.array(val_text_feats)
val_text_feats = torch.from_numpy(val_text_feats).float()
val_multi_feats = [te_feats["multifeats"][obj[0]] for obj in test_id_labels]
val_multi_feats = np.array(val_multi_feats)
val_multi_feats = torch.from_numpy(val_multi_feats).float()
valid_dataset = MMDataset(val_img_feats, val_text_feats, val_multi_feats, test_id_labels)
# val: 87 / 271; 174 / 548
if args.model_type == 'adapter':
model = MMFusionTransformer(n_heads=args.heads, hidden_dim=args.d, dropout=0.1, num_layers=args.num_layers)
elif args.model_type == 'fc':
model = MLPClassifier(hidden_dim=args.d)
else:
raise NotImplementedError
model = model.cuda()
trainer = CustomTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
data_collator=collate_func,
compute_metrics=compute_metrics,
model_type=args.model_type,
callbacks=[EarlyStoppingCallback(early_stopping_patience=3, early_stopping_threshold=0.02, )],
)
trainer.train()
print("Saving checkpoint in checkpoints/")
os.makedirs("checkpoints/mlp_ocr", exist_ok=True)
trainer.save_model("checkpoints/mlp_ocr/bs_{}_lr{}_heads{}_d{}.pt".format(args.train_batch_size, args.lr, args.heads, args.d))
def test_model(data_dir, split, test_fpath, results_fpath, lang, model_id='imagebert', args=None):
te_feats = json.load(open(join(data_dir, "features", "%s_feats.json"%(split))))
test_id_labels = [obj["tweet_id"] for obj in jsonlines.open(join(data_dir, test_fpath))]
te_img_feats = [te_feats["imgfeats"][obj] for obj in test_id_labels]
te_img_feats = np.array(te_img_feats)
te_text_feats = [te_feats["textfeats"][obj] for obj in test_id_labels]
te_text_feats = np.array(te_text_feats)
te_multi_feats = [te_feats["multifeats"][obj] for obj in test_id_labels]
te_multi_feats = np.array(te_multi_feats)
te_img_feats = torch.from_numpy(te_img_feats).float().cuda()
te_text_feats = torch.from_numpy(te_text_feats).float().cuda()
te_multi_feats = torch.from_numpy(te_multi_feats).float().cuda()
test_dataset = MMTestDataset(te_img_feats, te_text_feats, te_multi_feats, test_id_labels)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, collate_fn=collate_func)
if args.model_type == 'adapter':
model = MMFusionTransformer(n_heads=args.heads, hidden_dim=args.d, dropout=0.1, num_layers=args.num_layers).cuda()
elif args.model_type == 'fc':
model = MLPClassifier(hidden_dim=args.d)
else:
raise NotImplementedError
print("Load checkpoints from checkpoints/mlp_ocr/bs_{}_lr{}_heads{}_d{}.pt/pytorch_model.bin".format(args.train_batch_size, args.lr, args.heads, args.d))
state_dict = torch.load("checkpoints/mlp_ocr/bs_{}_lr{}_heads{}_d{}.pt/pytorch_model.bin".format(args.train_batch_size, args.lr, args.heads, args.d))
model.load_state_dict(state_dict)
model = model.cuda()
## Write test file in format
with open(results_fpath, "w") as results_file:
results_file.write("tweet_id\tclass_label\trun_id\n")
for i, batch_dict in enumerate(test_loader):
tweet_id = test_dataset.tweet_ids[i]
batch_dict.pop("labels")
if args.model_type == 'adapter':
multifeats = batch_dict.pop("multi_tensor")
elif args.model_type == 'fc':
image_feats = batch_dict.pop("img_tensor")
text_feats = batch_dict.pop("text_tensor")
else:
raise NotImplementedError
with torch.no_grad():
outputs = model(**batch_dict)
prd = torch.sigmoid(outputs['logits']).item()
if prd > 0.25:
label = "Yes"
else:
label = "No"
results_file.write("{}\t{}\t{}\n".format(tweet_id, label, "{}".format(model_id)))
gold_fpath = join(data_dir, f'{basename(test_fpath)}')
# evaluation on dev
if check_format(results_fpath):
acc, precision, recall, f1 = evaluate(gold_fpath, results_fpath, subtask="A")
logging.info(f"Qformer for {lang} Accuracy (positive class): {acc}")
logging.info(f"Qformer for {lang} Precision (positive class): {precision}")
logging.info(f"Qformer for {lang} Recall (positive class): {recall}")
logging.info(f"Qformer for {lang} F1 (positive class): {f1}")
with open("results/hypersearch.txt", "a") as f:
f.write("bs_{}_lr{}_heads{}_d{}\t {}".format(args.train_batch_size, args.lr, args.heads, args.d, f1))
def supervised_training(data_dir, test_split, train_fpath, test_fpath, lang, args):
# run training function
train_qformer(data_dir, test_split, train_fpath, test_fpath, args)
# run test function on dev_test
test_model(data_dir="data/ocr_en/train_data/", split="dev_test", test_fpath='CT23_1A_checkworthy_multimodal_english_dev_test.jsonl',
results_fpath="results/mlp_ocr_en_subtask1A_en_dev_test.tsv".format(args.train_batch_size, args.lr, args.heads, args.d), lang=lang, args=args, model_id="baseline_adapter")
# run test function on test
test_model(data_dir="data/ocr_en/test_data/", split="test", test_fpath='CT23_1A_checkworthy_multimodal_english_test_gold.jsonl',
results_fpath="results/mlp_ocr_en_subtask1A_en_test.tsv".format(args.train_batch_size, args.lr, args.heads, args.d), lang=lang, args=args, model_id="baseline_adapter")
def main(config=None):
parser = argparse.ArgumentParser()
parser.add_argument("--data-dir", required=False, type=str,
default="data/ocr_en/train_data",
help="The absolute path to the training data")
parser.add_argument("--test-split", "-s", required=False, type=str,
default="dev", help="Test split name")
parser.add_argument("--train-file-name", "-tr", required=False, type=str,
default="CT23_1A_checkworthy_multimodal_english_train.jsonl",
help="Training file name")
parser.add_argument("--test-file-name", "-te", required=False, type=str,
default="CT23_1A_checkworthy_multimodal_english_dev.jsonl",
help="Test file name")
parser.add_argument("--lang", "-l", required=False, type=str, default="english",
help="Options: arabic | english")
parser.add_argument("--lr", required=False, type=float, default=1e-4,
help="learning rate")
parser.add_argument("--train-batch-size", required=False, type=int, default=64,
help="training batch size")
parser.add_argument("--heads", required=False, type=int, default=12,
help="heads")
parser.add_argument("--d", required=False, type=int, default=480,
help="hidden_dimension")
parser.add_argument("--num-layers", required=False, type=int, default=1,
help="hidden_dimension")
parser.add_argument("--model-type", required=False, type=str, default="adapter",
help="fc or adapter")
args = parser.parse_args()
# args.heads = config.heads
# args.d = config.d
# args.lr = config.lr
# args.train_batch_size = config.train_batch_size
# args.num_layers = config.num_layers
wandb.init(mode="disabled",)
# wandb.init(entity='marvinpeng', project="checkthat",) # replace the entity with your name and your project to run a hyper parameter sweep
supervised_training(args.data_dir, args.test_split, args.train_file_name, args.test_file_name, args.lang, args)
if __name__ == '__main__':
main()