forked from learnedsystems/SOSD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_uniform.py
64 lines (49 loc) · 1.75 KB
/
gen_uniform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
import numpy as np
import struct
# Random seed to use for random generator.
seed = 42
# Writes values to binary file.
def to_binary(data, filename, uint32):
if uint32:
filename += "_uint32"
else:
filename += "_uint64"
with open(filename, "wb") as f:
# Write size.
f.write(struct.pack("Q", len(data)))
# Write values.
data.tofile(f)
print("wrote to binary " + filename)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--sparse", help="sparse (default: no)", action="store_true")
parser.add_argument("--uint32", help="uint32 instead of uint64 (default: no)", action="store_true")
parser.add_argument("--many", help="200M instead of 1K keys (default: no)", action="store_true")
args = parser.parse_args()
if args.many:
num_keys = 200000000
num_keys_str = "200M"
else:
num_keys = 1000
num_keys_str = "1K"
np.random.seed(seed)
if args.sparse:
print("Generating sparse uniform data")
if args.uint32:
data = np.random.randint(0, 4294967295, size=num_keys, dtype="uint32")
else:
data = np.random.randint(0, 18446744073709551615, size=num_keys, dtype="uint64")
data.sort()
to_binary(data, "data/uniform_sparse_" + num_keys_str, args.uint32)
else:
print("Generating dense uniform data")
# Make dense keys not start at 0
offset = 42
if args.uint32:
data = np.arange(offset, num_keys + offset, dtype="uint32")
else:
data = np.arange(offset, num_keys + offset, dtype="uint64")
to_binary(data, "data/uniform_dense_" + num_keys_str, args.uint32)
if __name__ == "__main__":
main()