-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrappers.py
564 lines (476 loc) · 17.4 KB
/
wrappers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import threading
import gym
import numpy as np
import os
class DeepMindLabyrinth(object):
ACTION_SET_DEFAULT = (
(0, 0, 0, 1, 0, 0, 0), # Forward
(0, 0, 0, -1, 0, 0, 0), # Backward
(0, 0, -1, 0, 0, 0, 0), # Strafe Left
(0, 0, 1, 0, 0, 0, 0), # Strafe Right
(-20, 0, 0, 0, 0, 0, 0), # Look Left
(20, 0, 0, 0, 0, 0, 0), # Look Right
(-20, 0, 0, 1, 0, 0, 0), # Look Left + Forward
(20, 0, 0, 1, 0, 0, 0), # Look Right + Forward
(0, 0, 0, 0, 1, 0, 0), # Fire
)
ACTION_SET_MEDIUM = (
(0, 0, 0, 1, 0, 0, 0), # Forward
(0, 0, 0, -1, 0, 0, 0), # Backward
(0, 0, -1, 0, 0, 0, 0), # Strafe Left
(0, 0, 1, 0, 0, 0, 0), # Strafe Right
(-20, 0, 0, 0, 0, 0, 0), # Look Left
(20, 0, 0, 0, 0, 0, 0), # Look Right
(0, 0, 0, 0, 0, 0, 0), # Idle.
)
ACTION_SET_SMALL = (
(0, 0, 0, 1, 0, 0, 0), # Forward
(-20, 0, 0, 0, 0, 0, 0), # Look Left
(20, 0, 0, 0, 0, 0, 0), # Look Right
)
def __init__(
self, level, mode, action_repeat=4, render_size=(64, 64),
action_set=ACTION_SET_DEFAULT, level_cache=None, seed=None,
runfiles_path=None):
assert mode in ('train', 'test')
import deepmind_lab
if runfiles_path:
print('Setting DMLab runfiles path:', runfiles_path)
deepmind_lab.set_runfiles_path(runfiles_path)
self._config = {}
self._config['width'] = render_size[0]
self._config['height'] = render_size[1]
self._config['logLevel'] = 'WARN'
if mode == 'test':
self._config['allowHoldOutLevels'] = 'true'
self._config['mixerSeed'] = 0x600D5EED
self._action_repeat = action_repeat
self._random = np.random.RandomState(seed)
self._env = deepmind_lab.Lab(
level='contributed/dmlab30/'+level,
observations=['RGB_INTERLEAVED'],
config={k: str(v) for k, v in self._config.items()},
level_cache=level_cache)
self._action_set = action_set
self._last_image = None
self._done = True
@property
def observation_space(self):
shape = (self._config['height'], self._config['width'], 3)
space = gym.spaces.Box(low=0, high=255, shape=shape, dtype=np.uint8)
return gym.spaces.Dict({'image': space})
@property
def action_space(self):
return gym.spaces.Discrete(len(self._action_set))
def reset(self):
self._done = False
self._env.reset(seed=self._random.randint(0, 2 ** 31 - 1))
obs = self._get_obs()
return obs
def step(self, action):
raw_action = np.array(self._action_set[action], np.intc)
reward = self._env.step(raw_action, num_steps=self._action_repeat)
self._done = not self._env.is_running()
obs = self._get_obs()
return obs, reward, self._done, {}
def render(self, *args, **kwargs):
if kwargs.get('mode', 'rgb_array') != 'rgb_array':
raise ValueError("Only render mode 'rgb_array' is supported.")
del args # Unused
del kwargs # Unused
return self._last_image
def close(self):
self._env.close()
def _get_obs(self):
if self._done:
image = 0 * self._last_image
else:
image = self._env.observations()['RGB_INTERLEAVED']
self._last_image = image
return {'image': image}
class MetaWorld:
def __init__(self, name, seed=None, action_repeat=1, size=(64, 64), camera=None):
import metaworld
from metaworld.envs import (
ALL_V2_ENVIRONMENTS_GOAL_OBSERVABLE,
ALL_V2_ENVIRONMENTS_GOAL_HIDDEN,
)
os.environ["MUJOCO_GL"] = "egl"
# export MUJOCO_GL="osmesa"
task = f"{name}-v2-goal-observable"
env_cls = ALL_V2_ENVIRONMENTS_GOAL_OBSERVABLE[task]
self._env = env_cls(seed=seed)
self._env._freeze_rand_vec = False
self._size = size
self._action_repeat = action_repeat
self._camera = camera
@property
def obs_space(self):
spaces = {
"image": gym.spaces.Box(0, 255, self._size + (3,), dtype=np.uint8),
"reward": gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
"is_first": gym.spaces.Box(0, 1, (), dtype=np.bool_),
"is_last": gym.spaces.Box(0, 1, (), dtype=np.bool_),
"is_terminal": gym.spaces.Box(0, 1, (), dtype=np.bool_),
"state": self._env.observation_space,
"success": gym.spaces.Box(0, 1, (), dtype=np.bool_),
}
return gym.spaces.Dict(spaces)
# @property
# def act_space(self):
# action = self._env.action_space
# return {"action": action}
@property
def action_space(self):
spec = self._env.action_space
return spec
def step(self, action):
assert np.isfinite(action).all(), action
reward = 0.0
success = 0.0
for _ in range(self._action_repeat):
state, rew, done, info = self._env.step(action)
success += float(info["success"])
reward += rew or 0.0
success = min(success, 1.0)
assert success in [0.0, 1.0]
obs = {
"reward": reward,
"is_first": False,
"is_last": False, # will be handled by timelimit wrapper
"is_terminal": False, # will be handled by per_episode function
"image": self._env.sim.render(
*self._size, mode="offscreen", camera_name=self._camera
),
"state": state,
"success": success,
}
return {'image': obs['image'], 'state': obs['state']}, obs['reward'], False, info
def reset(self):
if self._camera == "corner2":
self._env.model.cam_pos[2][:] = [0.75, 0.075, 0.7]
state = self._env.reset()
obs = {
"reward": 0.0,
"is_first": True,
"is_last": False,
"is_terminal": False,
"image": self._env.sim.render(
*self._size, mode="offscreen", camera_name=self._camera
),
"state": state,
"success": False,
}
return {'image': obs['image'], 'state': obs['state']}
class DeepMindControl:
def __init__(self, name, action_repeat=1, size=(64, 64), camera=None):
domain, task = name.split('_', 1)
if domain == 'cup': # Only domain with multiple words.
domain = 'ball_in_cup'
if isinstance(domain, str):
from dm_control import suite
self._env = suite.load(domain, task)
else:
assert task is None
self._env = domain()
self._action_repeat = action_repeat
self._size = size
if camera is None:
camera = dict(quadruped=2).get(domain, 0)
self._camera = camera
@property
def observation_space(self):
spaces = {}
for key, value in self._env.observation_spec().items():
spaces[key] = gym.spaces.Box(
-np.inf, np.inf, value.shape, dtype=np.float32)
spaces['image'] = gym.spaces.Box(
0, 255, self._size + (3,), dtype=np.uint8)
return gym.spaces.Dict(spaces)
@property
def action_space(self):
spec = self._env.action_spec()
return gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32)
def step(self, action):
assert np.isfinite(action).all(), action
reward = 0
for _ in range(self._action_repeat):
time_step = self._env.step(action)
reward += time_step.reward or 0
if time_step.last():
break
obs = dict(time_step.observation)
obs['image'] = self.render()
done = time_step.last()
info = {'discount': np.array(time_step.discount, np.float32)}
return obs, reward, done, info
def reset(self):
time_step = self._env.reset()
obs = dict(time_step.observation)
obs['image'] = self.render()
return obs
def render(self, *args, **kwargs):
if kwargs.get('mode', 'rgb_array') != 'rgb_array':
raise ValueError("Only render mode 'rgb_array' is supported.")
return self._env.physics.render(*self._size, camera_id=self._camera)
class Atari:
LOCK = threading.Lock()
def __init__(
self, name, action_repeat=4, size=(84, 84), grayscale=True, noops=30,
life_done=False, sticky_actions=True, all_actions=False):
assert size[0] == size[1]
import gym.wrappers
import gym.envs.atari
if name == 'james_bond':
name = 'jamesbond'
with self.LOCK:
env = gym.envs.atari.AtariEnv(
game=name, obs_type='image', frameskip=1,
repeat_action_probability=0.25 if sticky_actions else 0.0,
full_action_space=all_actions)
# Avoid unnecessary rendering in inner env.
env._get_obs = lambda: None
# Tell wrapper that the inner env has no action repeat.
env.spec = gym.envs.registration.EnvSpec('NoFrameskip-v0')
env = gym.wrappers.AtariPreprocessing(
env, noops, action_repeat, size[0], life_done, grayscale)
self._env = env
self._grayscale = grayscale
@property
def observation_space(self):
return gym.spaces.Dict({
'image': self._env.observation_space,
'ram': gym.spaces.Box(0, 255, (128,), np.uint8),
})
@property
def action_space(self):
return self._env.action_space
def close(self):
return self._env.close()
def reset(self):
with self.LOCK:
image = self._env.reset()
if self._grayscale:
image = image[..., None]
obs = {'image': image, 'ram': self._env.env._get_ram()}
return obs
def step(self, action):
image, reward, done, info = self._env.step(action)
if self._grayscale:
image = image[..., None]
obs = {'image': image, 'ram': self._env.env._get_ram()}
return obs, reward, done, info
def render(self, mode):
return self._env.render(mode)
class CollectDataset:
def __init__(self, env, callbacks=None, precision=32, logger=None, mode='train'):
self._env = env
self._callbacks = callbacks or ()
self._precision = precision
self._episode = None
self._mean_episode_score = 0
self._mean_episode_success = 0
self._episode_count = 0
self._logger = logger
self._mode = mode
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
obs, reward, done, info = self._env.step(action)
obs = {k: self._convert(v) for k, v in obs.items()}
transition = obs.copy()
if isinstance(action, dict):
transition.update(action)
else:
transition['action'] = action
transition['reward'] = reward
transition['discount'] = info.get('discount', np.array(1 - float(done)))
transition['success'] = info['success']
self._episode.append(transition)
if done:
for key, value in self._episode[1].items():
if key not in self._episode[0]:
self._episode[0][key] = 0 * value
episode = {k: [t[k] for t in self._episode] for k in self._episode[0]}
episode = {k: self._convert(v) for k, v in episode.items()}
info['episode'] = episode
if self._mode == 'eval':
self._mean_episode_score += (float(episode['reward'].astype(np.float64).sum())) * 0.1
self._mean_episode_success += (float(np.sum(episode['success']) >= 1.0)) * 0.1
self._episode_count += 1
for callback in self._callbacks:
callback(episode)
if (self._episode_count == 10) and (self._mode == 'eval'):
self._logger.scalar('mean_eval_return', self._mean_episode_score)
self._logger.scalar('mean_eval_success', self._mean_episode_success)
self._logger.write()
self._mean_episode_score = 0
self._mean_episode_success = 0
self._episode_count = 0
return obs, reward, done, info
def reset(self):
obs = self._env.reset()
transition = obs.copy()
# Missing keys will be filled with a zeroed out version of the first
# transition, because we do not know what action information the agent will
# pass yet.
transition['reward'] = 0.0
transition['discount'] = 1.0
self._episode = [transition]
return obs
def _convert(self, value):
value = np.array(value)
if np.issubdtype(value.dtype, np.floating):
dtype = {16: np.float16, 32: np.float32, 64: np.float64}[self._precision]
elif np.issubdtype(value.dtype, np.signedinteger):
dtype = {16: np.int16, 32: np.int32, 64: np.int64}[self._precision]
elif np.issubdtype(value.dtype, np.uint8):
dtype = np.uint8
else:
raise NotImplementedError(value.dtype)
return value.astype(dtype)
# class CollectDataset:
# def __init__(self, env, callbacks=None, precision=32):
# self._env = env
# self._callbacks = callbacks or ()
# self._precision = precision
# self._episode = None
# def __getattr__(self, name):
# return getattr(self._env, name)
# def step(self, action):
# obs, reward, done, info = self._env.step(action)
# obs = {k: self._convert(v) for k, v in obs.items()}
# transition = obs.copy()
# if isinstance(action, dict):
# transition.update(action)
# else:
# transition['action'] = action
# transition['reward'] = reward
# transition['discount'] = info.get('discount', np.array(1 - float(done)))
# self._episode.append(transition)
# if done:
# for key, value in self._episode[1].items():
# if key not in self._episode[0]:
# self._episode[0][key] = 0 * value
# episode = {k: [t[k] for t in self._episode] for k in self._episode[0]}
# episode = {k: self._convert(v) for k, v in episode.items()}
# info['episode'] = episode
# for callback in self._callbacks:
# callback(episode)
# return obs, reward, done, info
# def reset(self):
# obs = self._env.reset()
# transition = obs.copy()
# # Missing keys will be filled with a zeroed out version of the first
# # transition, because we do not know what action information the agent will
# # pass yet.
# transition['reward'] = 0.0
# transition['discount'] = 1.0
# self._episode = [transition]
# return obs
# def _convert(self, value):
# value = np.array(value)
# if np.issubdtype(value.dtype, np.floating):
# dtype = {16: np.float16, 32: np.float32, 64: np.float64}[self._precision]
# elif np.issubdtype(value.dtype, np.signedinteger):
# dtype = {16: np.int16, 32: np.int32, 64: np.int64}[self._precision]
# elif np.issubdtype(value.dtype, np.uint8):
# dtype = np.uint8
# else:
# raise NotImplementedError(value.dtype)
# return value.astype(dtype)
class TimeLimit:
def __init__(self, env, duration):
self._env = env
self._duration = duration
self._step = None
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
assert self._step is not None, 'Must reset environment.'
obs, reward, done, info = self._env.step(action)
self._step += 1
if self._step >= self._duration:
done = True
if 'discount' not in info:
info['discount'] = np.array(1.0).astype(np.float32)
self._step = None
return obs, reward, done, info
def reset(self):
self._step = 0
return self._env.reset()
class NormalizeActions:
def __init__(self, env):
self._env = env
self._mask = np.logical_and(
np.isfinite(env.action_space.low),
np.isfinite(env.action_space.high))
self._low = np.where(self._mask, env.action_space.low, -1)
self._high = np.where(self._mask, env.action_space.high, 1)
def __getattr__(self, name):
return getattr(self._env, name)
@property
def action_space(self):
low = np.where(self._mask, -np.ones_like(self._low), self._low)
high = np.where(self._mask, np.ones_like(self._low), self._high)
return gym.spaces.Box(low, high, dtype=np.float32)
def step(self, action):
original = (action + 1) / 2 * (self._high - self._low) + self._low
original = np.where(self._mask, original, action)
return self._env.step(original)
class OneHotAction:
def __init__(self, env):
assert isinstance(env.action_space, gym.spaces.Discrete)
self._env = env
self._random = np.random.RandomState()
def __getattr__(self, name):
return getattr(self._env, name)
@property
def action_space(self):
shape = (self._env.action_space.n,)
space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
space.sample = self._sample_action
space.discrete = True
return space
def step(self, action):
index = np.argmax(action).astype(int)
reference = np.zeros_like(action)
reference[index] = 1
if not np.allclose(reference, action):
raise ValueError(f'Invalid one-hot action:\n{action}')
return self._env.step(index)
def reset(self):
return self._env.reset()
def _sample_action(self):
actions = self._env.action_space.n
index = self._random.randint(0, actions)
reference = np.zeros(actions, dtype=np.float32)
reference[index] = 1.0
return reference
class RewardObs:
def __init__(self, env):
self._env = env
def __getattr__(self, name):
return getattr(self._env, name)
@property
def observation_space(self):
spaces = self._env.observation_space.spaces
assert 'reward' not in spaces
spaces['reward'] = gym.spaces.Box(-np.inf, np.inf, dtype=np.float32)
return gym.spaces.Dict(spaces)
def step(self, action):
obs, reward, done, info = self._env.step(action)
obs['reward'] = reward
return obs, reward, done, info
def reset(self):
obs = self._env.reset()
obs['reward'] = 0.0
return obs
class SelectAction:
def __init__(self, env, key):
self._env = env
self._key = key
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
return self._env.step(action[self._key])