-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsampler.c
117 lines (97 loc) · 2.72 KB
/
sampler.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/**
@file sampler.c
@brief Sample parameters.
Copyright (c) 2024, Pariksheet Nanda
SPDX-License-Identifier: Apache-2.0
*/
#include <math.h>
#include <sampler.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_sort.h>
#include <gsl/gsl_statistics_double.h>
/**
Silverman's rule of thumb to calculate Gaussian bandwidth parameter.
The formula used is:
\f{eqnarray*}{
h &=& 0.9 \min \left( \sigma,
{\displaystyle\frac{\mathrm{IQR}}{1.34}} \right)
n ^{-\frac{1}{5}} \\
\mathrm{where,}& \\
\sigma &\equiv& \textrm{standard deviation of } x \\
\mathrm{IQR} &\equiv& \textrm{inter-quartile range of } x \\
n &\equiv& \textrm{cadinality of } x \\
\f}
@param x Sorted input vector.
@return Bandwidth of Gaussian distribution.
@see kde
*/
double
silverman(gsl_vector* x)
{
double sd = gsl_stats_sd(x->data, 1, x->size);
double iqr =
gsl_stats_quantile_from_sorted_data(x->data, 1, x->size, 0.75) -
gsl_stats_quantile_from_sorted_data(x->data, 1, x->size, 0.25);
return 0.9 * fmin(sd, iqr / 1.34) * pow(x->size, -0.2);
}
/**
1-D Gaussian kernel density estimate.
The formula used is:
\f{eqnarray*}{
\hat{f}_h(x) &=& \frac{1}{n}
\sum_i \mathcal{N} ( x_i - x, h ) \\
\mathrm{where,}& \\
n &\equiv& \textrm{cardinality of } x \\
\mathcal{N}(\mu, \sigma) &\equiv&
\textrm{Normal / Gaussian distribution function} \ \
\f}
@param x Input point to evaluate the kernel density.
@param params_ data Input vector to construct the kernel density and
Gaussian bandwidth parameter.
@return Gaussian kernel density.
@see silverman
*/
double
kde(double x, void* params_)
{
kde_params_t* params = (kde_params_t*)params_;
gsl_vector* data = params->data;
double h = params->bandwidth;
double y = 0;
for (size_t i = 0; i < data->size; ++i) {
y += gsl_ran_gaussian_pdf(gsl_vector_get(data, i) - x, h);
}
return y / data->size;
}
/**
ABC-SMC algorithm 4.8 in \cite sisson2019.
@param params Output set of weighted parameter vectors.
@param model Target model posterior density.
@param kernel Smoothing kernel function.
@param n Number of parameters to calibrate (maybe).
@param sampling Sampling density.
@param proposal Proposal density.
@param alpha Control the effective sample size.
@return GSL_SUCCESS
@see kde
*/
int
abc_smc(gsl_matrix* params,
gsl_function* model,
gsl_function *kernel,
int n,
gsl_function* sampling,
gsl_function* proposal,
int alpha)
{
(void)params;
(void)model;
(void)kernel;
(void)n;
(void)sampling;
(void)proposal;
(void)alpha;
//gsl_sort(data->data, 1, data->size);
return GSL_SUCCESS;
}