forked from pytorch/serve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpackage_llama.sh
executable file
·49 lines (39 loc) · 1.47 KB
/
package_llama.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Check if the argument is empty or unset
if [ -z "$1" ]; then
echo "Missing Mandatory argument: Path to llama weights"
echo "Usage: ./package_llama.sh ./models--meta-llama--Meta-Llama-3-8B-Instruct/snapshots/e5e23bbe8e749ef0efcf16cad411a7d23bd23298"
exit 1
fi
MODEL_GENERATION="true"
LLAMA_WEIGHTS="$1"
if [ -n "$2" ]; then
MODEL_GENERATION="$2"
fi
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
if [ "$MODEL_GENERATION" = "true" ]; then
echo "Cleaning up previous build of llama-cpp"
rm -rf build
git clone https://github.com/ggerganov/llama.cpp.git build
cd build
make
python -m pip install -r requirements.txt
echo "Convert the model to ggml FP16 format"
if [[ $MODEL_NAME == *"Meta-Llama-3"* ]]; then
python convert.py $HF_MODEL_SNAPSHOT --vocab-type bpe,hfft --outfile ggml-model-f16.gguf
else
python convert.py $HF_MODEL_SNAPSHOT --outfile ggml-model-f16.gguf
fi
echo "Quantize the model to 4-bits (using q4_0 method)"
./quantize ggml-model-f16.gguf ../ggml-model-q4_0.gguf q4_0
cd ..
export LLAMA_Q4_MODEL=$PWD/ggml-model-q4_0.gguf
echo "Saved quantized model weights to $LLAMA_Q4_MODEL"
fi
echo "Creating torchserve model archive"
torch-model-archiver --model-name llamacpp --version 1.0 --handler llama_cpp_handler.py --config-file model-config.yaml --archive-format tgz
mkdir -p model_store
mv llamacpp.tar.gz model_store/.
if [ "$MODEL_GENERATION" = "true" ]; then
echo "Cleaning up build of llama-cpp"
rm -rf build
fi