-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsnake.cpp
1906 lines (1664 loc) · 45.1 KB
/
snake.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "snake.h"
#include <algorithm>
#include <fstream>
#include <float.h>
#include "stuffs.h"
#define NBHD_RADIUS 1
const double PI = 3.1415926536;
void normalize(double** array3x3);
void normalize2(double** array3x3);
void normalize3(double** array3x3);
Snake Snake::replace(Point oldpoint,Point newpoint)
//Replace the i-th point of the snake by the point p
{
Snake news=*this;
PointList list=news.getSnake();
std::replace(list.begin(),list.end(),oldpoint,newpoint);
news.setSnake(list);
list.clear();
return news;
}
//Default constructor
Snake::Snake()
{
//SnakeSize=0;
//SnakePixels=std::list<Pixel>::;
//SnakeImage=NULL;
//dynamicAllocation();
}
//Destructor
Snake::~Snake()
{
this->snake.clear();
this->shape.clear();
snakeU.clear();
snakeL.clear();
//freeAllocation();
/*int i;
for (i = 0; i < width; ++i)
{
delete[] gradient[i];
delete[] flow[i];
}
delete[] gradient;
delete[] flow;*/
}
Snake& Snake::operator=(const Snake &s)
{
this->e_balloon=s.e_balloon;
this->e_curvature=s.e_curvature;
this->e_flow=s.e_flow;
this->e_image=s.e_image;
this->e_prior=s.e_prior;
this->e_uniformity=s.e_uniformity;
this->flow=s.flow;
this->gradient=s.gradient;
this->height=s.height;
this->shape=s.shape;
this->snake=s.snake;
this->snakelength=s.snakelength;
this->useDTW=s.useDTW;
this->useSPI=s.useSPI;
this->width=s.width;
return *this;
}
void Snake::dynamicAllocation()
{
e_uniformity = new double*[3];
e_curvature = new double*[3];
e_image = new double*[3];
e_flow = new double*[3];
e_balloon = new double*[3];
e_prior = new double*[3];
for(int i=0;i<3;i++)
{
e_uniformity[i]=new double[3];
e_curvature[i]=new double[3];
e_image[i]=new double[3];
e_flow[i]=new double[3];
e_balloon[i]=new double[3];
e_prior[i]=new double[3];
}
}
void Snake::freeAllocation()
{
for(int i=0;i<3;i++)
{
delete[] e_uniformity[i];
delete[] e_curvature[i];
delete[] e_image[i];
delete[] e_flow[i];
delete[] e_balloon[i];
delete[] e_prior[i];
}
delete[] e_uniformity;
delete[] e_curvature;
delete[] e_image;
delete[] e_flow;
delete[] e_balloon;
delete[] e_prior;
}
Snake::Snake(int width, int height, double** gradient, double** flow, PointList points, PointList shape)
{
this->snake = points;
this->shape=shape;
this->gradient = gradient;
this->flow=flow;
this->width = width;
this->height = height;
// VERY IMPORTANT !!! Dynamic allocation
dynamicAllocation();
}
void Snake::initGradientFlow(const char* fileName)
{
/* Read the image */
typedef itk::ImageFileReader<ImageType> ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(fileName);
reader->Update();
/* Create the gradient image */
// typedef itk::GradientMagnitudeImageFilter< ImageType, ImageType > GradientFilter;
// GradientFilter::Pointer fGrad = GradientFilter::New();
// fGrad->SetInput(reader->GetOutput());
// fGrad->Update();
typedef itk::GradientMagnitudeRecursiveGaussianImageFilter< ImageType, ImageType > GradientFilter;
GradientFilter::Pointer fGrad = GradientFilter::New();
fGrad->SetInput(reader->GetOutput());
fGrad->SetSigma(1.0);
fGrad->Update();
ImageType::Pointer imageGrad = fGrad->GetOutput();
/* Rescale to the range 0-255 */
typedef itk::RescaleIntensityImageFilter<ImageType,ImageType> RescaleFilterType2;
RescaleFilterType2::Pointer gradient0255 = RescaleFilterType2::New();
gradient0255->SetOutputMinimum( 0 );
gradient0255->SetOutputMaximum( 255 );
gradient0255->SetInput(fGrad->GetOutput());
gradient0255->Update();
/* Create the vector flow image*/
typedef itk::ApproximateSignedDistanceMapImageFilter< ImageType, ImageType > ApproximateSignedDistanceMapImageFilterType;
ApproximateSignedDistanceMapImageFilterType::Pointer fFlow = ApproximateSignedDistanceMapImageFilterType::New();
fFlow->SetInput(gradient0255->GetOutput());
fFlow->SetInsideValue(255);
fFlow->SetOutsideValue(0);
fFlow->Update();
ImageType::Pointer imageFlow = fFlow->GetOutput();
//Get the width and the height of the image
width=imageGrad->GetLargestPossibleRegion().GetSize()[0];
height=imageGrad->GetLargestPossibleRegion().GetSize()[1];
gradient = newArray(width,height);
flow = newArray(width,height);
//
ImageType::IndexType index;
for(int i=0;i<width;i++)
{
for(int j=0;j<height;j++)
{
index[0]=i;
index[1]=j;
gradient[i][j]=imageGrad->GetPixel(index);
flow[i][j]=255.0-imageFlow->GetPixel(index);
}
}
//Save the flow image
// typedef itk::ImageFileWriter<UnsignedCharImageType> WriterType;
// typedef itk::RescaleIntensityImageFilter<FloatImageType,UnsignedCharImageType> FilterType;
// FilterType::Pointer filter = FilterType::New();
// filter->SetOutputMinimum( 0 );
// filter->SetOutputMaximum( 255 );
// WriterType::Pointer writer = WriterType::New();
// filter->SetInput(fFlow->GetOutput());
// filter->Update();
// writer->SetInput(filter->GetOutput());
// writer->SetFileName("1.png");
// try
// {
// writer->Update();
// }
// catch( itk::ExceptionObject & err )
// {
// std::cerr << "ExceptionObject caught !" << std::endl;
// std::cerr << err << std::endl;
// return;
// }
}
void Snake::initGradientFlow(const char* fileName, double sigma, double threshold)
{
/* Read the image */
typedef itk::ImageFileReader<ImageType> ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(fileName);
reader->Update();
typedef itk::GradientMagnitudeRecursiveGaussianImageFilter< ImageType, ImageType > GradientFilter;
GradientFilter::Pointer fGrad = GradientFilter::New();
fGrad->SetInput(reader->GetOutput());
fGrad->SetSigma(sigma);
fGrad->Update();
//save this as the gradient image for snake processing later
ImageType::Pointer imageGrad = fGrad->GetOutput();
/* Rescale to the range 0-255 */
typedef itk::RescaleIntensityImageFilter<ImageType,ImageType> RescaleFilterType2;
RescaleFilterType2::Pointer gradient0255 = RescaleFilterType2::New();
gradient0255->SetOutputMinimum( 0 );
gradient0255->SetOutputMaximum( 255 );
gradient0255->SetInput(fGrad->GetOutput());
gradient0255->Update();
/* Add a threshold filter to adjust the edges */
typedef itk::ThresholdImageFilter <ImageType> ThresholdImageFilterType;
ThresholdImageFilterType::Pointer thresholdFilter = ThresholdImageFilterType::New();
thresholdFilter->SetInput(gradient0255->GetOutput());
thresholdFilter->ThresholdOutside(0, threshold);
thresholdFilter->SetOutsideValue(255);
/* Create the vector flow image from the thresholded image */
typedef itk::ApproximateSignedDistanceMapImageFilter< ImageType, ImageType > ApproximateSignedDistanceMapImageFilterType;
ApproximateSignedDistanceMapImageFilterType::Pointer fFlow = ApproximateSignedDistanceMapImageFilterType::New();
fFlow->SetInput(thresholdFilter->GetOutput());
fFlow->SetInsideValue(0);
fFlow->SetOutsideValue(255);
fFlow->Update();
ImageType::Pointer imageFlow = fFlow->GetOutput();
//Get the width and the height of the image
width=imageGrad->GetLargestPossibleRegion().GetSize()[0];
height=imageGrad->GetLargestPossibleRegion().GetSize()[1];
gradient = newArray(width,height);
flow = newArray(width,height);
//
ImageType::IndexType index;
for(int i=0;i<width;i++)
{
for(int j=0;j<height;j++)
{
index[0]=i;
index[1]=j;
gradient[i][j]=imageGrad->GetPixel(index);
flow[i][j]=imageFlow->GetPixel(index);
}
}
}
void Snake::setGradientFlow(QImage imageGrad, QImage imageFlow)
{
//Get the width and the height of the image
int width=imageGrad.width();
int height=imageGrad.height();
gradient = newArray(width,height);
flow = newArray(width,height);
for(int i=0;i<width;i++)
{
for(int j=0;j<height;j++)
{
gradient[i][j]=imageGrad.pixelIndex(i,j);
flow[i][j]=imageFlow.pixelIndex(i,j);
}
}
}
Snake::Snake(const char* fileName)
{
initGradientFlow(fileName);
int dimensionMin=std::min(width,height);
int radius=dimensionMin/2-5;
Point p;
Point center(width/2,height/2);
PointList s;
double angle=0.314159/2; //18.0 degrees;
for(int i=0;i<40;i++)
{
p.setLocation(radius*cos(angle*i)+center.getX(),radius*sin(angle*i)+center.getY());
s.push_back(p);
}
this->snake=s;
this->shape=s;
// VERY IMPORTANT !!! Dynamic allocation
dynamicAllocation();
}
Snake::Snake(const char* fileName, double sigma, double threshold)
{
initGradientFlow(fileName,sigma,threshold);
int dimensionMin=std::min(width,height);
int radius=dimensionMin/2-5;
Point p;
Point center(width/2,height/2);
PointList s;
double angle=0.314159/2; //18.0 degrees;
for(int i=0;i<40;i++)
{
p.setLocation(radius*cos(angle*i)+center.getX(),radius*sin(angle*i)+center.getY());
s.push_back(p);
}
this->snake=s;
this->shape=s;
// VERY IMPORTANT !!! Dynamic allocation
dynamicAllocation();
}
Snake::Snake(const char* fileName, PointList shape)
{
initGradientFlow(fileName);
int dimensionMin=std::min(width,height);
int radius=dimensionMin/2-5;
Point p;
Point center(width/2,height/2);
PointList s;
double angle=2*PI/(int)shape.size();
for(int i=0;i<(int)shape.size();i++)
{
p.setLocation(radius*cos(angle*i)+center.getX(),radius*sin(angle*i)+center.getY());
s.push_back(p);
}
this->snake=s;
this->shape=shape;
// VERY IMPORTANT !!! Dynamic allocation
dynamicAllocation();
}
Snake::Snake(const char* fileName, PointList shape, double sigma, double threshold)
{
initGradientFlow(fileName,sigma,threshold);
int dimensionMin=std::min(width,height);
int radius=dimensionMin/2-5;
Point p;
Point center(width/2,height/2);
PointList s;
double angle=2*PI/(int)shape.size();
for(int i=0;i<(int)shape.size();i++)
{
p.setLocation(radius*cos(angle*i)+center.getX(),radius*sin(angle*i)+center.getY());
s.push_back(p);
}
this->snake=s;
this->shape=shape;
// VERY IMPORTANT !!! Dynamic allocation
dynamicAllocation();
}
Point Snake::get(int j)
{
PointList::iterator i=snake.begin();
std::advance(i,j);
Point p(i->getX(),i->getY());
return p;
}
bool Snake::step1(double continuityCoeff,double curvatureCoeff,double imageCoeff,double flowCoeff,double balloonCoeff)
{
bool changed=false;
Point p(0,0);
int x,y;
// compute length of original snake (used by method: f_uniformity)
this->snakelength = getsnakelength();
PointList newsnake;
// for each point of the previous snake
for(int i=0;i<(int)snake.size();i++)
{
Point prev = get((i+(int)snake.size()-1)%(int)snake.size());
Point cur = get(i);
Point next = get((i+1)%(int)snake.size());
// compute all energies
for(int dy=-1;dy<=1;dy++)
{
for(int dx=-1;dx<=1;dx++)
{
p.setLocation(cur.getX()+dx, cur.getY()+dy);
e_uniformity[1+dx][1+dy] = f_uniformity(prev,next,p);
e_curvature[1+dx][1+dy] = f_curvature(prev,p,next);
e_flow[1+dx][1+dy] = f_gflow(cur,p);
e_balloon[1+dx][1+dy] = f_balloon(prev,p,cur,next);
e_image[1+dx][1+dy] = f_image(cur,p);
}
}
// normalize energies
/*normalize(e_uniformity);
normalize(e_curvature);
normalize(e_flow);
normalize(e_balloon);*/
normalize3(e_uniformity);
normalize3(e_curvature);
normalize3(e_flow);
normalize3(e_image);
normalize3(e_balloon);
// find the point with the minimum sum of energies
double emin, e;
emin=0;
x=cur.getX();
y=cur.getY();
if(continuityCoeff >0) emin+= continuityCoeff * e_uniformity[1][1]; // internal energy
if(curvatureCoeff >0) emin+= curvatureCoeff * e_curvature[1][1]; // internal energy
if(imageCoeff >0) emin+= imageCoeff * e_image[1][1]; // external energy
if(flowCoeff >0) emin+= flowCoeff * e_flow[1][1]; // external energy
if(balloonCoeff >0) emin+= balloonCoeff * e_balloon[1][1];
for(int dy=-1;dy<=1;dy++)
{
for(int dx=-1;dx<=1;dx++)
{
e = 0;
if(continuityCoeff >0) e+= continuityCoeff * e_uniformity[1+dx][1+dy]; // internal energy
if(curvatureCoeff >0) e+= curvatureCoeff * e_curvature[1+dx][1+dy]; // internal energy
if(imageCoeff >0) e+= imageCoeff * e_image[1+dx][1+dy]; // external energy
if(flowCoeff >0) e+= flowCoeff * e_flow[1+dx][1+dy]; // external energy
if(balloonCoeff >0) e+= balloonCoeff * e_balloon[1+dx][1+dy];
if (e<emin)
{
emin=e;
x=cur.getX()+dx;
y=cur.getY()+dy;
}
}
}
// boundary check
if (x<1) x=1;
if (x>=(this->width-1)) x=this->width-2;
if (y<1) y=1;
if (y>=(this->height-1)) y=this->height-2;
// compute the returned value
if (x!=cur.getX() || y!=cur.getY())
{
changed=true;
}
// create the point in the new snake
Point p1(x,y);
newsnake.push_back(p1);
}
// new snake becomes current
this->snake.clear();
this->snake=newsnake;
return changed;
}
bool Snake::step2(double continuityCoeff,double curvatureCoeff,double imageCoeff,double flowCoeff,double balloonCoeff,double priorCoeff)
{
bool changed=false;
Point p(0,0);
double emin, e;
int x,y;
// compute length of original snake (used by method: f_uniformity)
this->snakelength = getsnakelength();
// for each point of the previous snake
for(int i=0;i<(int)snake.size();i++)
{
Point prev = get((i+(int)snake.size()-1)%(int)snake.size());
Point cur = get(i);
Point next = get((i+1)%(int)snake.size());
// compute all energies
for(int dy=-1;dy<=1;dy++)
{
for(int dx=-1;dx<=1;dx++)
{
p.setLocation(cur.getX()+dx, cur.getY()+dy);
e_uniformity[1+dx][1+dy] = f_uniformity(prev,next,p);
e_curvature[1+dx][1+dy] = f_curvature(prev,p,next);
e_flow[1+dx][1+dy] = f_gflow(cur,p);
e_balloon[1+dx][1+dy] = f_balloon(prev,p,cur,next);
e_image[1+dx][1+dy] = f_image(cur,p);
if(priorCoeff>0)
{
Snake s2=this->replace(cur,p);
e_prior[1+dx][1+dy] = s2.f_prior();
}
}
}
// normalize energies
normalize3(e_uniformity);
normalize3(e_curvature);
normalize3(e_flow);
normalize3(e_image);
normalize3(e_balloon);
if(priorCoeff>0) normalize3(e_prior);
// find the point with the minimum sum of energies
emin=0;
x=cur.getX();
y=cur.getY();
if(continuityCoeff !=0) emin+= continuityCoeff * e_uniformity[1][1]; // internal energy
if(curvatureCoeff !=0) emin+= curvatureCoeff * e_curvature[1][1]; // internal energy
if(imageCoeff !=0) emin+= imageCoeff * e_image[1][1]; // external energy
if(flowCoeff !=0) emin+= flowCoeff * e_flow[1][1]; // external energy
if(balloonCoeff !=0) emin+= balloonCoeff * e_balloon[1][1];
if(priorCoeff !=0) emin+= priorCoeff * e_prior[1][1];
for(int dy=-1;dy<=1;dy++)
{
for(int dx=-1;dx<=1;dx++)
{
e = 0;
if(continuityCoeff !=0) e+= continuityCoeff * e_uniformity[1+dx][1+dy]; // internal energy
if(curvatureCoeff !=0) e+= curvatureCoeff * e_curvature[1+dx][1+dy]; // internal energy
if(imageCoeff !=0) e+= imageCoeff * e_image[1+dx][1+dy]; // external energy
if(flowCoeff !=0) e+= flowCoeff * e_flow[1+dx][1+dy]; // external energy
if(balloonCoeff !=0) e+= balloonCoeff * e_balloon[1+dx][1+dy];
if(priorCoeff !=0) e+= priorCoeff * e_prior[1+dx][1+dy];
if (e<emin)
{
emin=e;
x=cur.getX()+dx;
y=cur.getY()+dy;
}
}
}
// boundary check
if (x<1) x=1;
if (x>=(this->width-1)) x=this->width-2;
if (y<1) y=1;
if (y>=(this->height-1)) y=this->height-2;
if (x!=cur.getX() || y!=cur.getY())
{
changed=true;
// create the point in the new snake
PointList newsnake;
Point p1(x,y);
newsnake=this->replace(cur,p1).getSnake();
this->snake.clear();
this->snake=newsnake;
newsnake.clear();
}
// compute the returned value
/*Point p1(x,y);
newsnake.push_back(p1); */
}
//this->snake=newsnake;
return changed;
}
// normalize energy matrix
void normalize(double** array3x3)
{
double sum=0;
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
sum+=std::abs(array3x3[i][j]);
if (sum==0) return;
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
array3x3[i][j]/=sum;
}
void normalize2(double** array3x3)
{
double max=0;
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
if(std::abs(array3x3[i][j])>max)
max=std::abs(array3x3[i][j]);
}
}
if (max==0) return;
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
array3x3[i][j]/=max;
}
void normalize3(double** array3x3)
{
double max=0;
double min=DBL_MAX;
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
if(std::abs(array3x3[i][j])>max)
max=std::abs(array3x3[i][j]);
if(std::abs(array3x3[i][j])<min)
min=std::abs(array3x3[i][j]);
}
}
if (max==min) return;
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
array3x3[i][j]=(array3x3[i][j]-min)/(max-min);
}
double Snake::getsnakelength()
{
// total length of snake
double length=0;
for(int i=0;i<(int)snake.size();i++)
{
Point cur = get(i);
Point next = get((i+1)%(int)snake.size());
length+=distance2D(cur, next);
}
return length;
}
double Snake::f_uniformity(Point prev, Point next, Point p)
{
// length of previous segment
double un = distance2D(prev, p);
// mesure of uniformity
double avg = snakelength/(int)snake.size();
double dun = std::abs(un-avg);
// elasticity energy
return dun*dun;
}
double Snake::f_curvature(Point prev, Point p, Point next)
{
int ux = p.getX()-prev.getX();
int uy = p.getY()-prev.getY();
double un = std::sqrt((double)ux*ux+uy*uy);
int vx = p.getX()-next.getX();
int vy = p.getY()-next.getY();
double vn = std::sqrt((double)vx*vx+vy*vy);
if (un==0 || vn==0) return 0;
double cx = (vx+ux)/(un*vn);
double cy = (vy+uy)/(un*vn);
// curvature energy
double cn = cx*cx+cy*cy;
return cn;
}
double Snake::f_gflow(Point cur, Point p)
{
// gradient flow
// int dcur = this->flow[cur.getX()][cur.getY()];
// int dp = this->flow[p.getX()][p.getY()];
// double d = dp-dcur;
// return d;
double dp = -this->flow[p.getX()][p.getY()];
return dp;
}
double Snake::f_image(Point cur, Point p)
{
// double d = distance2D(cur, p);
// double g = this->gradient[cur.getX()][cur.getY()];
// double e = g*d;
// return e;
double g = this->gradient[p.getX()][p.getY()];
return g;
}
double Snake::f_balloon(Point prev, Point p, Point cur, Point next)
{
//
Point t=next-prev;
double tx=(double)t.getX()/t.norm();
double ty=(double)t.getY()/t.norm();
Point s=p-cur;
double u=(double)s.getX()+(2*NBHD_RADIUS+1)*ty;
double v=(double)s.getY()-(2*NBHD_RADIUS+1)*tx;
return u*u+v*v;
}
double Snake::f_prior()
{
complex* sh=this->DFTShape();
complex* sn=this->DFTSnake();
complex* Sh=iDFT(sh,(int)this->shape.size());
complex* Sn=iDFT(sn,(int)this->snake.size());
double d;
switch(distanceType)
{
case EUCLIDEAN:
d=0;
for(int i=0;i<(int)snake.size();i++)
{
d=d+std::norm(sh[i]-sn[i]);
}
//d=this->EuclideanModified();
break;
case DTW:
//d=dtwDistance(Sh,Sn,(int)this->shape.size(),this->windowLength);
d=dtwDistance(Sh,Sn,(int)this->shape.size());
break;
case PRATT:
d=1-Pratt(Sn,(int)this->snake.size(),Sh,(int)this->shape.size());
break;
case GDM:
d = interArea(Sn,(int)this->snake.size(),Sh,(int)this->shape.size());
break;
case LARSSON:
d=1-maxR12(sn,(int)this->snake.size(),sh,(int)this->shape.size());
break;
}
delete[] sn;
delete[] Sn;
return d;
}
double Snake::EuclideanModified()
{
complex* sh=this->DFTShape();
complex* Sh=iDFT(sh,(int)this->shape.size());
//complex* sh=PointsToDFT(this->shape,this->useSPI,this->useRotInvar);
complex* sn;
complex* Sn;
int N=snake.size();
double min=DBL_MAX;
double d;
for(int i=0;i<N;i++)
{
//sn=this->DFTSnake();
PointList l=this->shiftSnake(i);
sn=PointsToDFT(l,this->useSPI,this->useRotInvar);
Sn=iDFT(sn,(int)this->snake.size());
d=0;
for(int i=0;i<(int)snake.size();i++)
{
d=d+std::norm(sh[i]-sn[i]);
}
//Get the index where the distance is minimal
if(d < min)
{
min=d;
}
l.clear();
delete[] sn;
delete[] Sn;
}
delete[] sh;
delete[] Sh;
return min;
}
//double interArea(complex* S, int sizeS, complex* T, int sizeT)
//{
// typedef CGAL::Simple_cartesian<double> K;
// typedef K::Point_2 PointCGAL;
// typedef CGAL::Polygon_2<K> Polygon_2;
// typedef CGAL::Polygon_with_holes_2<K> Polygon_with_holes_2;
// PointCGAL *points=new PointCGAL[sizeS];
// PointCGAL *points2=new PointCGAL[sizeT];
// for(int i=0;i<sizeS;i++)
// {
// points[i]=PointCGAL(100*S[i].real(),100*S[i].imag());
// //points[i]=PointCGAL(S[i].real()/500,S[i].imag()/500);
// }
// for(int i=0;i<sizeT;i++)
// {
// points2[i]=PointCGAL(100*T[i].real(),100*T[i].imag());
// //points2[i]=PointCGAL(T[i].real()/500,T[i].imag()/500);
// }
// Polygon_2 poly1(points, points+sizeS);
// Polygon_2 poly2(points2, points2+sizeT);
// //CGAL::General_polygon_with_holes_2<K> poly3;
// std::list<Polygon_with_holes_2> polyI;
// CGAL::intersection(poly1, poly2, std::back_inserter(polyI));
// //CGAL::difference(poly1, poly2, std::back_inserter(polyI));
// //CGAL::symmetric_difference(poly1, poly2, std::back_inserter(polyI));
// double totalArea = 0;
// typedef std::list<Polygon_with_holes_2>::iterator LIT;
// for(LIT lit = polyI.begin(); lit!=polyI.end(); lit++)
// {
// totalArea+=lit->outer_boundary().area();
// }
// double a1=poly1.area();
// double a2=poly2.area();
// totalArea = a1+a2-2*totalArea;
// delete[] points;
// delete[] points2;
// polyI.clear();
// return totalArea;
//}
double interArea(complex* S, int sizeS, complex* T, int sizeT)
{
typedef CGAL::Simple_cartesian<double> K;
typedef K::Point_2 PointCGAL;
typedef CGAL::Polygon_2<K> Polygon_2;
typedef CGAL::Polygon_with_holes_2<K> Polygon_with_holes_2;
PointCGAL *points=new PointCGAL[sizeS];
PointCGAL *points2=new PointCGAL[sizeT];
for(int i=0;i<sizeS;i++)
{
points[i]=PointCGAL(100*S[i].real(),100*S[i].imag());
//points[i]=PointCGAL(S[i].real()/500,S[i].imag()/500);
}
for(int i=0;i<sizeT;i++)
{
points2[i]=PointCGAL(100*T[i].real(),100*T[i].imag());
//points2[i]=PointCGAL(T[i].real()/500,T[i].imag()/500);
}
Polygon_2 poly1(points, points+sizeS);
Polygon_2 poly2(points2, points2+sizeT);
//CGAL::General_polygon_with_holes_2<K> poly3;
std::list<Polygon_with_holes_2> polyI;
CGAL::intersection(poly1, poly2, std::back_inserter(polyI));
//CGAL::difference(poly1, poly2, std::back_inserter(polyI));
//CGAL::symmetric_difference(poly1, poly2, std::back_inserter(polyI));
double totalArea = 0;
typedef std::list<Polygon_with_holes_2>::iterator LIT;
for(LIT lit = polyI.begin(); lit!=polyI.end(); lit++)
{
totalArea+=lit->outer_boundary().area();
}
double a1=poly1.area();
double a2=poly2.area();
totalArea = a1+a2-2*totalArea;
delete[] points;
delete[] points2;
polyI.clear();
return totalArea;
}
double maxR12(complex* S, int sizeS, complex* T, int sizeT)
//compute iDFT(/S*T) and return the max coefficient
{
double r;
complex* P = new complex[sizeS];
for(int i=0;i<sizeS;i++)
{
P[i]=conj(S[i])*T[i];
}
r=std::norm(max(iDFT(P,sizeS),0,sizeS-1));
delete[] P;
return r;
}
double distance(int i, complex* S, complex* T, int sizeT)
//Distance between the i-th pixel of S and its closest pixel in T
{
double min=std::norm(S[i]-T[0]);
for(int j=0;j<sizeT;j++)
{
if(min>std::norm(S[i]-T[j])) min=std::norm(S[i]-T[j]);
}
return min;
}
complex* fillPoints(complex* c, int n, int N)
//c is the coordinates of the contour, n is the size and N-1 is the number of points added between two points of the contour (N segments)
{
double x1,y1,x2,y2,stepx,stepy;
complex* v=new complex[n*N];
int j=0;
for(int i=0;i<n;i++)
{
x1=c[i].real();
y1=c[i].imag();
if(i<n-1)
{
x2=c[i+1].real();
y2=c[i+1].imag();
}
else
{
x2=c[0].real();
y2=c[0].imag();
}
v[j]=c[i];
j++;
stepx=(x2-x1)/N;
stepy=(y2-y1)/N;
for(int i=1;i<N;i++)
{
v[j]=complex(x1+i*stepx,y1+i*stepy);
j++;
}
}
return v;
}
double Pratt(complex* S, int sizeS, complex* T, int sizeT)
{
double sum=0;
// int N=3;
// complex* nS=fillPoints(S,sizeS,N);
// complex* nT=fillPoints(T,sizeT,N);
// for(int i=0;i<sizeS*N;i++)
// {
// sum=sum+(double)1/(1+distance(i,nS,nT,sizeT*N)*distance(i,nS,nT,sizeT*N));
// }
for(int i=0;i<sizeS;i++)
{
sum=sum+(double)1/(1+distance(i,S,T,sizeT)*distance(i,S,T,sizeT));
}
sum=sum/std::max(sizeS,sizeT);
// delete[] nS;
// delete[] nT;
return sum;
}
double PolygonArea(complex* p,int N)
{
int i,j;
double area = 0;
for (i=0;i<N;i++)
{
j = (i + 1) % N;
area += p[i].real() * p[j].imag();
area -= p[i].imag() * p[j].real();
}
area /= 2;
return(area < 0 ? -area : area);
}
double PartitionDistance(complex* S, int sizeS, complex* T, int sizeT)
{
double d=PolygonArea(S,sizeS)-PolygonArea(T,sizeT);
return(d < 0 ? -d : d);
}
complex* getFourierCoeffiecients(PointList snake)