-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
136 lines (117 loc) · 4.89 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import numpy as np
import random
import time
from scipy.spatial import Delaunay
import matplotlib.pyplot as plt
from adgm.adgm import ADGM
from adgm.energy import build_pairwise_potentials
from utils import draw_results, get_adjacency_matrix
# for reproducibility
np.random.seed(12)
random.seed(12)
def main():
# numbers of points
n1 = 40
n2 = 30
# in this example, we randomly take some points of the first set
# then randomly transform them, thus we need n1 >= n2
assert n1 >= n2
# create a set of randoms 2D points, zero-centered them
points1 = np.random.randint(100, size=(n1, 2))
points1 = points1 - np.mean(points1, axis=0)
# randomly transform it using a similarity transformation
# first construct the transformation matrix
theta = np.random.rand()*np.pi/2
# scale = np.random.uniform(low=0.5, high=1.5)
scale = 0.9
tx = np.random.randint(low=120, high=150)
ty = np.random.randint(50)
M = np.array([[scale*np.cos(theta), np.sin(theta), tx],
[-np.sin(theta), scale*np.cos(theta), ty]])
# then transform the first set of points
points2 = np.ones((3, n1))
points2[:2] = np.transpose(points1)
points2 = np.transpose(np.dot(M, points2))
# randomly keep only n2 points
indices = list(range(n1))
random.shuffle(indices)
points2 = points2[indices]
points2 = points2[:n2]
# ground-truth matching, for evaluation
X_gt = np.zeros((n1, n2), dtype=int)
for idx2, idx1 in enumerate(indices[:n2]):
X_gt[idx1, idx2] = 1
# Add random potential assignments
# assignment_mask = np.logical_or(np.random.randn(n1, n2) > 0.5, X_gt)
assignment_mask = None
# where to save outputs
output_dir = './output'
os.makedirs(output_dir, exist_ok=True)
# Visualize the feature points and the ground-truth matching
plot = plt.subplots()
plot[1].title.set_text('Ground-truth matching')
draw_results(plot, points1, points2, X=X_gt)
# plt.savefig(os.path.join(output_dir, 'ground-truth.jpg'), dpi=600, bbox_inches='tight')
# Graph matching
# Weight of length with respect to angle
# If the scales of the the sets of points are roughly the same then this
# value should be high (max = 1.0)
# If the scales are very different but the poses are roughly the same
# (i.e. small rotation) then this value should be small (min = 0.0)
# If both scales and poses are very different, then using sparse graphs
# (e.g., Delaunay triangulation) may help, but for difficult cases
# one may have to use higher-order potentials.
len_weight = 0.7
# We do not use any unary potentials here
U = np.zeros((n1, n2))
# Build the pairwise potentials with fully-connected graphs
start = time.time()
P_dense = build_pairwise_potentials(points1, points2,
assignment_mask=assignment_mask, len_weight=len_weight)
print('Building dense potentials time (s):', time.time() - start)
# Call ADGM solver
# ADGM parameters
kwargs = {'rho': max(10**(-60.0/np.sqrt(n1*n2)), 1e-4),
'rho_max': 100,
'step': 1.2,
'precision': 1e-5,
'decrease_delta': 1e-3,
'iter1': 5,
'iter2': 10,
'max_iter': 10000,
'verbose': False}
start = time.time()
X_dense = ADGM(U, P_dense, assignment_mask=assignment_mask, **kwargs)
print('Fully-connected matching time (s):', time.time() - start)
# Plot the results
plot = plt.subplots()
plot[1].title.set_text('Fully-connected graph matching')
draw_results(plot, points1, points2, X=X_dense, X_gt=X_gt)
# plt.savefig(os.path.join(output_dir, 'dense.jpg'), dpi=600, bbox_inches='tight')
# Sparse graphs
# Building the graphs based on Delaunay triangulation
tri1 = Delaunay(points1)
adj1 = get_adjacency_matrix(tri1)
tri2 = Delaunay(points2)
adj2 = get_adjacency_matrix(tri2)
start = time.time()
# Build the pairwise potentials with Delaunay graphs
P_sparse = build_pairwise_potentials(points1, points2,
assignment_mask=assignment_mask, adj1=adj1, adj2=adj2,
len_weight=len_weight)
print('Building sparse potentials time (s):', time.time() - start)
# Call ADGM solver
start = time.time()
X_sparse = ADGM(U, P_sparse, assignment_mask=assignment_mask, **kwargs)
print('Sparse matching time (s):', time.time() - start)
# Plot the results
plot = plt.subplots()
plot[1].title.set_text('Sparse graph matching')
plt.triplot(points1[:,0], points1[:,1], tri1.simplices, color='b')
plt.triplot(points2[:,0], points2[:,1], tri2.simplices, color='b')
draw_results(plot, points1, points2, X=X_sparse, X_gt=X_gt)
plt.savefig(os.path.join(output_dir, 'sparse.jpg'), dpi=600, bbox_inches='tight')
plt.show()
if __name__ == "__main__":
main()