-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdemo.m
162 lines (132 loc) · 3.79 KB
/
demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
%%% Demo for the Alternating Direction Graph Matching algorithm
%%% I (D. Khue Le-Huu) adapted this code from Duchenne's
%%% If you find this code useful, please cite:
%%% D. Khuê Lê-Huu and Nikos Paragios. Alternating Direction Graph Matching. arXiv preprint arXiv:1611.07583 (2016).
addpath('./ann_mwrapper');
addpath('./ADGM');
addpath('./TM/mex');
addpath('./TM');
close all;
%% Create a third-order graph matching problem
%number of points
nP1=30;
nP2=40;
nPmax = max(nP1, nP2);
%randomly generate them
P1=randn(2,nPmax);
%generate modified version of points 1
scale= 0.5+rand();
theta = 0.5*rand();
Mrot = [cos(theta) -sin(theta) ; sin(theta) cos(theta) ];
P2=Mrot*P1*scale+0.05*randn(size(P1));
P1 = P1(:,1:nP1);
P2 = P2(:,1:nP2);
%number of used triangles (results can be bad if too low)
nT=nP1*50;
t1=floor(rand(3,nT)*nP1);
while 1
probFound=false;
for i=1:3
ind=(t1(i,:)==t1(1+mod(i,3),:));
if(nnz(ind)~=0)
t1(i,ind)=floor(rand(1,nnz(ind))*nP1);
probFound=true;
end
end
if(~probFound)
break;
end
end
%generate features
t1=int32(t1);
[feat1,feat2] = mexComputeFeature(P1,P2,int32(t1),'simple');
%number of nearest neighbors used for each triangle (results can be bad if
%too low)
nNN=300;
%find the nearest neighbors
[inds, dists] = annquery(feat2, feat1, nNN, 'eps', 10);
%build the tensor
[i j k]=ind2sub([nP2,nP2,nP2],inds);
tmp=repmat(1:nT,nNN,1);
indH = double(t1(:,tmp(:)))'*nP2 + [k(:)-1 j(:)-1 i(:)-1];
valH = exp(-dists(:)/mean(dists(:)));
%% Initiatial solution
X0 = 1/nP2*ones(nP2,nP1);
%%
%% Solve with Tensor Matching
%%
[X_TM, ~]=tensorMatching(X0,[],[],[],[],indH,valH);
% Discretize and compute the objective score
X_TM = asgHun(X_TM);
objective_TM = getMatchingScore(X_TM, indH, valH);
fprintf('Objective score TM = %f\n', objective_TM);
%draw
if 1
figure;
imagesc(X_TM);
title('TM');
figure;
hold on;
plot(P1(1,:),P1(2,:),'r x');
plot(P2(1,:),P2(2,:),'b o');
[~, match] = max(X_TM);
for p=1:nP1
plot([P1(1,p),P2(1,match(p))],[P1(2,p),P2(2,match(p))],'k- ');
end
title('TM');
end
%%
%% Solve with ADGM
%%
% The following are typical values, but one may tune them to get better performance:
% + Increasing rho or eta usually results in faster convergence but lower
% objective (and vice-versa: decreasing them usually offer higher objective values)
% + Decreasing iter1 or iter2 usually results in faster convergence but
% lower objective (and vice-versa: increasing them usually offer higher objective values)
rho = nP1*nP2/1000;
MAX_ITER = 5000;
eta = 2.0;
iter1 = 200;
iter2 = 50;
%% ADGM1
[X_ADGM1] = ADGM1(X0, [], [], [], [], indH, valH, rho, MAX_ITER, false, eta, iter1, iter2);
%[X_ADGM1] = ADGM1_SYMMETRIC(X0, [], [], [], [], indH, valH, rho, MAX_ITER, true, eta, iter1, iter2);
X_ADGM1 = asgHun(X_ADGM1);
objective_ADGM1 = getMatchingScore(X_ADGM1, indH, valH);
fprintf('Objective score ADGM1 = %f\n', objective_ADGM1);
%draw
if 1
figure;
imagesc(X_ADGM1);
title('ADGM1');
figure;
hold on;
plot(P1(1,:),P1(2,:),'r x');
plot(P2(1,:),P2(2,:),'b o');
[~, match] = max(X_ADGM1);
for p=1:nP1
plot([P1(1,p),P2(1,match(p))],[P1(2,p),P2(2,match(p))],'k- ');
end
title('ADGM1');
end
%% ADGM2
[X_ADGM2] = ADGM2(X0, [], [], [], [], indH, valH, rho, MAX_ITER, false, eta, iter1, iter2);
%[X_ADGM2] = ADGM2_SYMMETRIC(X0, [], [], [], [], indH, valH, rho, MAX_ITER, true, eta, iter1, iter2);
X_ADGM2 = asgHun(X_ADGM2);
objective_ADGM2 = getMatchingScore(X_ADGM2, indH, valH);
fprintf('Objective score ADGM2 = %f\n', objective_ADGM2);
%draw
if 1
figure;
imagesc(X_ADGM2);
title('ADGM2');
figure;
hold on;
plot(P1(1,:),P1(2,:),'r x');
plot(P2(1,:),P2(2,:),'b o');
[~, match] = max(X_ADGM2);
for p=1:nP1
plot([P1(1,p),P2(1,match(p))],[P1(2,p),P2(2,match(p))],'k- ');
end
title('ADGM2');
end