-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate.py
296 lines (256 loc) · 14.5 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# Copyright (C) 2022-2023 Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
import os
import numpy as np
from tqdm import tqdm
from torch.utils.data import DataLoader
from dataset.mocap import MocapDataset, worker_init_fn
import torch
from torch.utils.tensorboard import SummaryWriter
from utils.ae_utils import red
import pickle as pkl
from models.classifiers import Autoreg_classifier, TransformerDiscriminator
from classify import train_classifier, evaluate_classifier
from utils.variable_length import valid_concat_rot_trans
from utils.fid import (calculate_activation_statistics, calculate_diversity_multimodality, calculate_fid, multiclass_div_mod)
import smplx
from functools import partial
from utils.utils import compute_map
def filter_empty(li, valid):
""" If valid is all zeros, remove the elements in the lists in li at the corresponding index """
return [[a[i] for i, v in enumerate(valid) if v[0]] for a in li]
@torch.no_grad()
def extract_activations(model, data_loader, device):
""" Forward pass with a classifier for each element of the batch, accumulate the features. """
acts, accuracies = [], []
for x, valid, y in tqdm(data_loader):
x, valid = x.to(device), valid.to(device)
act = model.forward_fid(x, valid)
acts.append(act.reshape(act.shape[0], -1))
# Compute acccuracy
y, y_hat = y.to(device), model.forward(x, valid)
accuracies.append((torch.argmax(y, 1) == torch.argmax(y_hat, 1)).float())
accuracies = np.float(100. * torch.cat(accuracies).mean().cpu())
return torch.cat(acts, dim=0), accuracies
def precompute_real_fid(train_data_dir, seq_len, class_model, model_name):
""" Extract activations on the dataset, compute mean and var, dump it"""
data_loader = DataLoader(MocapDataset(data_dir=train_data_dir, seq_len=seq_len, training=False,
n_iter=None, n=-1, data_augment=0),
batch_size=32, num_workers=1, prefetch_factor=2, shuffle=False,
worker_init_fn=worker_init_fn, pin_memory=False, drop_last=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
activations, accuracy = extract_activations(class_model, data_loader, device)
print(f"Accuracy={accuracy:.2f}")
mu, sigma = calculate_activation_statistics(activations)
with open(f'./logs/{model_name}/mu_sigma', 'wb') as f:
pkl.dump({'mu': mu, 'sigma': sigma}, f)
return mu, sigma
def compute_class_accuracy(data_loader, device, action_model_ckpt, data_type=None):
""" Evaluate pretrained classifier on samples using the conditioning actions as target."""
action_model, bm = build_and_load_classifier(action_model_ckpt, data_loader,
device, data_type=data_type)
fc = partial(forward_classifier, bm=bm, classifier=action_model,
device=device, cat_out=True)
mAP = evaluate_classifier(data_loader, classifier=fc, do_logging=False,
writer=None, current_iter=None, device=device, data_type=data_type)
return mAP
def build_classifier(device, data_type):
if 'babel' in data_type:
cut_joints = 0
# if use_bm:
#input_dim = 381 if not cut_joints else 3 * cut_joints
classifier = TransformerDiscriminator(device=device, in_dim=168).cuda()
#classifier = TransformerDiscriminator(smpl_input=False, cut_joints=24).cuda()
else:
raise NotImplementedError("Unknown data_dir, which model should I use?")
classifier.method = {'babel': 'TD'}[data_type]
return classifier
def build_and_load_classifier(action_model_ckpt, data_loader, device, data_type=None,
use_bm=0):
if data_type is None:
matches = [k for k in ['babel'] if k in data_loader.dataset.data_dir]
if len(matches) != 1:
raise NotImplementedError("Unknown data_dir, which model should I use?")
data_type = matches[0]
classifier = build_classifier(device, data_type)
checkpoint = torch.load(action_model_ckpt)
if data_type == 'babel':
weights = {k.replace('classifier.', ''): v for k,v in checkpoint['model_state_dict'].items()}
weights = {k: v for k, v in weights.items() if 'bm' not in k}
classifier.load_state_dict(weights)
else:
raise NotImplementedError("Unknown data_dir, which model should I use?")
classifier.eval()
# Define how to forward the classifier (if a body model is involved, we need a for loop on the batch to avoid going OOM).
if isinstance(classifier, Autoreg_classifier) or isinstance(classifier, TransformerDiscriminator):
bm = None
else:
raise NotImplementedError("No definition of classifier forward")
if use_bm:
raise NotImplementedError("Need to implement joints based evaluation.")
return classifier, bm
def forward_classifier(x, valid, classifier, bm, device, cat_out=False):
""" When using a body model, sequentially forward each element in the batch and zip results together.
Otherwise, simply make a batched forward and split the result. """
if isinstance(classifier, Autoreg_classifier) or isinstance(classifier, TransformerDiscriminator):
#def forward_classifier(x, valid):
# TODO we could chose to wrap with body model.
res = classifier.forward_fid(x.to(device), valid.to(device))
if not cat_out:
return torch.split(res[0], 1, dim=0), torch.split(res[1], 1, dim=0)
return res[0], res[1]
else:
raise NotImplementedError("No classifier forward defined")
def get_real_fid_path(action_model_ckpt):
real_fid_path = os.path.join('/'.join(action_model_ckpt.split('/')[:-3]), 'real_fid_stats.pkl')
return real_fid_path
@torch.no_grad()
def sample_pose_dataset(pose_gpt, path, data_loader, preparator, device,
class_conditional=True, seqlen_conditional=True,
temperature=1.0, top_k=None, cond_steps=0):
""" Loop over the data_loader; take the class embeddings and sample new poses with the same embeddings."""
os.makedirs(path, exist_ok=True)
if os.path.isfile(os.path.join(path, 'pose.pkl')):
print("Dataset with this name already sampled.")
return path
zidx = None
with torch.no_grad():
samples = []
labels = []
print(red("> Extracting activations for fid..."))
for x, valid, actions in tqdm(data_loader):
x, valid, actions = x.to(device), valid.to(device), actions.to(device)
x, *_ = preparator(x) # Correct input format for the model
_valid = valid
seqlens = valid.sum(1)
(rot, trans), valid, zidx = pose_gpt.sample_poses(zidx, x, valid,
actions=actions if class_conditional else None,
seqlens=seqlens if seqlen_conditional else None,
temperature=temperature,
top_k=top_k,
cond_steps=cond_steps, return_zidx=True)
sample_valid = _valid if pose_gpt.sample_eos_force else valid
# Concatenate rotation and translation.
poses = valid_concat_rot_trans(rot, trans, sample_valid)
samples.extend(poses)
labels.extend([e.squeeze(0).clone().cpu() for e in actions.split(1, dim=0)])
torch.save(labels, os.path.join(path, 'action.pt'))
f = open(os.path.join(path, 'pose.pkl'), 'wb')
pkl.dump(samples, f)
print("OK!")
@torch.no_grad()
def extract_from_classifier(*, batch_sampler, data_loader, preparator, device, action_model_ckpt,
debug=False, real_fid_path, sample_options={}, summarize=False, dump=False):
classifier, bm = build_and_load_classifier(action_model_ckpt, data_loader, device)
fc = partial(forward_classifier, bm=bm, classifier=classifier, device=device)
real_fid_path = get_real_fid_path(action_model_ckpt)
evaluate_real = (not os.path.isfile(real_fid_path)) or debug
zidx_or_bs = None
acc_gt, acc_gen, act_gt, act_gen, labels = [], [], [], [], []
with torch.no_grad():
print(red("> Generating synthetic dataset ..."))
for i, (x, valid, actions) in enumerate(tqdm(data_loader)):
poses, sample_valid, zidx_or_bs = batch_sampler(x=x, valid=valid, preparator=preparator,
actions=actions, device=device, zidx_or_bs=zidx_or_bs, data_loader=data_loader, i=i, **sample_options)
y_gen, fgen = filter_empty(fc(poses, sample_valid), sample_valid)
actions = torch.cat(filter_empty([torch.split(actions, 1, dim=0)], sample_valid)[0], dim=0)
act_gen.extend([f for f in fgen if not torch.isnan(f).int().sum().bool()])
labels.extend(actions)
mAP = compute_map(actions, y_gen)
acc_gen.append(mAP)
if evaluate_real:
y_gt, fgt = filter_empty(fc(x.to(device), valid.to(device)), sample_valid)
act_gt.extend(fgt)
mAP_real = compute_map(actions, y_gt)
acc_gt.append(mAP_real)
if not summarize:
return actions, labels, act_gt, act_gen, acc_gen
return metrics(actions, labels, act_gt, act_gen,
acc_gen, real_fid_path, debug, dump=dump)
@torch.no_grad()
def metrics(actions, labels, act_gt, act_gen,
acc_gen, real_fid_path,
debug, dump):
evaluate_real = (not os.path.isfile(real_fid_path)) or debug
num_classes = actions.shape[1]
feats_gen = torch.cat(act_gen)
div_gen, mod_gen = multiclass_div_mod(feats_gen, labels, nb_classes=num_classes)
stats_gen = calculate_activation_statistics(feats_gen)
if evaluate_real:
feats_gt = torch.cat(act_gt)
div_gt, mod_gt = multiclass_div_mod(feats_gt, labels, nb_classes=num_classes)
stats_gt = calculate_activation_statistics(feats_gt)
if dump:
with open(real_fid_path, 'wb') as f:
pkl.dump({'div_gt': div_gt, 'mod_gt': mod_gt,
'fid_stats': stats_gt}, f)
else:
with open(real_fid_path, 'rb') as f:
stats = pkl.load(f)
div_gt, mod_gt, stats_gt= stats['div_gt'], stats['mod_gt'], stats['fid_stats']
try:
fid = float(calculate_fid(stats_gt, stats_gen))
except ValueError as e:
if debug:
print("FID has produced NaNs, that's fine as you are in debug mode")
fid = 100.
else:
raise ValueError(e)
print(f"Gen : FID:{fid:.2f} - Acc/mAP: {100. * np.asarray(acc_gen).mean():.1f} - Div:{div_gen:.2f} - Multimod:{mod_gen:.2f} ")
return {'fid': fid, 'acc': 100. * np.asarray(acc_gen).mean(), 'diversity': div_gen, 'multimodality': mod_gen}
def classification_evaluation(model, data_loader, log_dir, epoch, args, action_model_ckpt,
preparator, while_training=True, debug=False, data_type=None,
temperature=1.0, top_k=None, cond_steps=0):
""" A classifier trained on real data is evaluated on samples and vice-versa. """
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
samples_path = os.path.join(log_dir, 'samples' + str(epoch) + '_t_' + str(temperature) + '_top' + str(top_k) + '_cond' + str(cond_steps))
is_training = model.gpt.training
model.gpt.eval()
sample_pose_dataset(model, samples_path, data_loader, preparator=preparator,
device=device, class_conditional=args.class_conditional,
seqlen_conditional=args.seqlen_conditional)
if is_training:
model.gpt.train()
sample_data_loader = DataLoader(MocapDataset(data_dir='./' + samples_path, seq_len=args.seq_len, training=False,
n_iter=None, n=-1, data_augment=0, dummy=0),
batch_size=32, num_workers=1, prefetch_factor=2, shuffle=False,
worker_init_fn=worker_init_fn, pin_memory=False, drop_last=True)
writer = SummaryWriter(log_dir)
# Evaluate a classifier pretrained with real data on samples.
mAP = compute_class_accuracy(data_loader=sample_data_loader, device=device,
action_model_ckpt=action_model_ckpt, data_type=data_type)
train_tag = 'at_train' if while_training else 'at_test'
writer.add_scalar(f"class_acc_samples/{train_tag}", mAP, epoch)
with open(os.path.join(samples_path, 'sample_classif_accuracy.txt'), 'a') as f:
f.write('Sample classification accuracy: ' + str(mAP))
#### Train a classifier on generated data and evaluate it on real validation data.
# Generated Actions: (60,)
val_data_loader = DataLoader(MocapDataset(data_dir=args.val_data_dir, seq_len=args.seq_len, training=False,
n=args.overfit, dummy=args.dummy == 1),
batch_size=args.val_batch_size, num_workers=args.num_workers,
prefetch_factor=args.prefetch_factor, shuffle=True,
worker_init_fn=worker_init_fn, pin_memory=False, drop_last=False)
if debug:
# Options set to debug
opts = {'ckpt_freq':100, 'restart_ckpt_freq': 500, # So never.
'val_freq': 1, 'log_every_n_iter': 50, 'n_iters_per_epoch' :100,
'max_epochs': 5, 'learning_rate': 2e-4}
elif while_training:
# Options set to train very fast
opts = {'ckpt_freq':100, 'restart_ckpt_freq': 500, # So never.
'val_freq': 5, 'log_every_n_iter' :200, 'n_iters_per_epoch' :1000,
'max_epochs' :150, 'learning_rate': 2e-4}
else:
opts = {'val_freq': 10, 'ckpt_freq':100, 'restart_ckpt_freq': 50,
'log_every_n_iter' :200, 'n_iters_per_epoch' :1000, 'max_epochs' :500,
'learning_rate': 5e-5}
classifier = build_classifier(device, data_type)
best_val_mAP = train_classifier(device=device, save_dir='/'.join(samples_path.split('/')[:-1]),
name=samples_path.split('/')[-1],
classifier=classifier,
loader_train=sample_data_loader, loader_val=val_data_loader,
train_batch_size=32, val_batch_size=32, do_logging=True,
extra_log_tag='_reals', data_type=data_type, **opts)
return best_val_mAP
if __name__ == '__main__':
print("Hello there!")