-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy patheval.py
194 lines (176 loc) · 5.63 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# sometimes, runs fail
# This (hacky) script lets
# eval results be logged to the
# right wandb run
import argparse
import json
import logging
from pathlib import Path
from typing import List, cast
import torch
from tqdm import tqdm
from wandb.sdk.wandb_run import Run
from presto.eval import (
AlgaeBloomsEval,
CropHarvestEval,
CroptypeFranceEval,
EuroSatEval,
EvalTask,
FuelMoistureEval,
TreeSatEval,
)
from presto.presto import Presto
from presto.utils import (
DEFAULT_SEED,
config_dir,
default_model_path,
device,
initialize_logging,
seed_everything,
timestamp_dirname,
update_data_dir,
)
seed_everything()
logger = logging.getLogger("__main__")
argparser = argparse.ArgumentParser()
argparser.add_argument("--path_to_state_dict", type=str, default="")
argparser.add_argument("--path_to_config", type=str, default="")
argparser.add_argument(
"--data_dir",
type=str,
default="",
help="Data is stored in <data_dir>/data. "
"Leave empty to use the directory you are running this file from.",
)
argparser.add_argument(
"--output_dir",
type=str,
default="",
help="Output is stored in <data_dir>/output. "
"Leave empty to use the directory you are running this file from.",
)
argparser.add_argument("--fully_supervised", dest="fully_supervised", action="store_true")
argparser.add_argument("--wandb", dest="wandb", action="store_true")
argparser.set_defaults(wandb=False)
argparser.set_defaults(fully_supervised=False)
args = argparser.parse_args().__dict__
path_to_state_dict = args["path_to_state_dict"]
path_to_config = args["path_to_config"]
fully_supervised = args["fully_supervised"]
wandb_enabled = args["wandb"]
data_dir = args["data_dir"]
if data_dir != "":
update_data_dir(data_dir)
output_parent_dir = Path(args["output_dir"]) if args["output_dir"] else Path(__file__).parent
run_id = None
if wandb_enabled:
import wandb
run = wandb.init(
entity="nasa-harvest",
project="presto-downstream",
dir=output_parent_dir,
)
run_id = cast(Run, run).id
logging_dir = output_parent_dir / "output" / timestamp_dirname(run_id)
logging_dir.mkdir(exist_ok=True, parents=True)
initialize_logging(logging_dir)
logger.info("Using output dir: %s" % logging_dir)
if path_to_config == "":
path_to_config = config_dir / "default.json"
logger.info("Loading config from %s" % path_to_config)
model_kwargs = json.load(Path(path_to_config).open("r"))
model = Presto.construct(**model_kwargs)
if not fully_supervised:
if path_to_state_dict == "":
path_to_state_dict = default_model_path
logger.info("Loading params from %s" % path_to_state_dict)
model.load_state_dict(torch.load(path_to_state_dict, map_location=device))
model.to(device)
logger.info("Loading evaluation tasks")
seeds = [0, DEFAULT_SEED, 84]
eval_task_list: List[EvalTask] = [
*[
CropHarvestEval(country="Brazil", ignore_dynamic_world=idw, seed=seed)
for idw in [True, False]
for seed in seeds
],
*[
CropHarvestEval(country="Kenya", ignore_dynamic_world=idw, seed=seed, sample_size=s)
for idw in [True, False]
for seed in seeds
for s in CropHarvestEval.country_to_sizes["Kenya"]
],
*[
CropHarvestEval(country="Togo", ignore_dynamic_world=idw, seed=seed, sample_size=s)
for idw in [True, False]
for seed in seeds
for s in CropHarvestEval.country_to_sizes["Togo"]
],
*[FuelMoistureEval(seed=seed) for seed in seeds],
*[AlgaeBloomsEval(seed=seed) for seed in seeds],
*[
EuroSatEval(rgb=rgb, input_patch_size=ps, seed=seed, aggregates=["mean"])
for rgb in [True, False]
for ps in [1, 2, 4, 8, 16, 32, 64]
for seed in seeds
],
*[
TreeSatEval(subset=subset, seed=seed, aggregates=["mean"])
for subset in ["S1", "S2"]
for seed in seeds
],
*[
CropHarvestEval("Togo", ignore_dynamic_world=True, num_timesteps=x, seed=seed)
for x in range(1, 12)
for seed in seeds
],
*[
CropHarvestEval("Kenya", ignore_dynamic_world=True, num_timesteps=x, seed=seed)
for x in range(1, 12)
for seed in seeds
],
*[
CroptypeFranceEval(input_patch_size=patch_size, aggregates=["mean"], seed=seed)
for patch_size in [1, 5]
for seed in seeds
],
]
if wandb_enabled:
eval_config = {
"model": model.__class__,
"encoder": model.encoder.__class__,
"decoder": model.decoder.__class__,
"device": device,
"model_parameters": "random" if fully_supervised else path_to_state_dict,
**args,
**model_kwargs,
}
wandb.config.update(eval_config)
result_dict = {}
for eval_task in tqdm(eval_task_list, desc="Full Evaluation"):
model_modes = ["finetune", "Regression", "Random Forest"]
if "EuroSat" in eval_task.name:
model_modes = [
"Regression",
"Random Forest",
"KNNat5",
"KNNat20",
"KNNat100",
"finetune",
]
if "TreeSat" in eval_task.name:
model_modes = ["finetune", "Random Forest"]
logger.info(eval_task.name)
results = eval_task.finetuning_results(model, model_modes=model_modes)
result_dict.update(results)
logger.info(json.dumps(results, indent=2))
if wandb_enabled:
wandb.log(results)
eval_task.clear_data()
eval_results_file = logging_dir / "results.json"
logger.info("Saving eval results to file %s" % eval_results_file)
with open(eval_results_file, "w") as f:
json.dump(result_dict, f)
if wandb_enabled and run:
run.finish()
logger.info(f"Wandb url: {run.url}")