Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

libcudnn error. #225

Open
arthurwolf opened this issue May 7, 2024 · 7 comments
Open

libcudnn error. #225

arthurwolf opened this issue May 7, 2024 · 7 comments

Comments

@arthurwolf
Copy link

I followed the provided instructions.

I turned the demo_part3 file into a normal python file to test the code:

# Import necessary libraries
import os
import sys
import torch
from openvoice import se_extractor
from openvoice.api import ToneColorConverter
from melo.api import TTS

# Constants
ckpt_converter = 'checkpoints_v2/converter'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
output_dir = 'outputs_v2'

# Create output directory if it does not exist
os.makedirs(output_dir, exist_ok=True)

# Initialize Tone Color Converter
tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)
tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')

# Extract tone color embedding for the target speaker
reference_speaker = 'resources/example_reference.mp3'
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, vad=False)

# Texts for various languages
texts = {
    'EN_NEWEST': "Did you ever hear a folk tale about a giant turtle?",
    'EN': "Did you ever hear a folk tale about a giant turtle?",
    'ES': "El resplandor del sol acaricia las olas, pintando el cielo con una paleta deslumbrante.",
    'FR': "La lueur dorée du soleil caresse les vagues, peignant le ciel d'une palette éblouissante.",
    'ZH': "在这次vacation中,我们计划去Paris欣赏埃菲尔铁塔和卢浮宫的美景。",
    'JP': "彼は毎朝ジョギングをして体を健康に保っています。",
    'KR': "안녕하세요! 오늘은 날씨가 정말 좋네요.",
}

# Output path for temporary audio file
src_path = f'{output_dir}/tmp.wav'
speed = 1.0  # Speed is adjustable

print("Processing TTS...")

# Process each language and text
for language, text in texts.items():

    print(f"Processing {language}...")

    model = TTS(language=language, device=device)
    speaker_ids = model.hps.data.spk2id

    for speaker_key in speaker_ids.keys():
        speaker_id = speaker_ids[speaker_key]
        speaker_key = speaker_key.lower().replace('_', '-')

        # Load source speaker embedding
        source_se = torch.load(f'checkpoints_v2/base_speakers/ses/{speaker_key}.pth', map_location=device)

        # Generate speech and save to temporary file
        model.tts_to_file(text, speaker_id, src_path, speed=speed)
        save_path = f'{output_dir}/output_v2_{speaker_key}.wav'

        # Convert tone color
        encode_message = "@MyShell"
        tone_color_converter.convert(
            audio_src_path=src_path,
            src_se=source_se,
            tgt_se=target_se,
            output_path=save_path,
            message=encode_message)

# Print completion message
print("TTS processing complete. Check the outputs in:", output_dir)

When I run it I get:


(openvoice) ╭─arthur at aquarelle in ~/dev/ai/OpenVoice on main✘✘✘ 24-05-07 - 23:45:23
╰─(openvoice) ⠠⠵ python tts.py                                                                                                                                                        on main|…8
/home/arthur/.anaconda3/envs/openvoice/lib/python3.9/site-packages/torch/nn/utils/weight_norm.py:28: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.
  warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.")
Loaded checkpoint 'checkpoints_v2/converter/checkpoint.pth'
missing/unexpected keys: [] []
OpenVoice version: v2
Could not load library libcudnn_cnn_infer.so.8. Error: /lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8: undefined symbol: _ZN5cudnn14cublasSaxpy_v2EP13cublasContextiPKfS3_iPfi, version libcudnn_ops_infer.so.8
Please make sure libcudnn_cnn_infer.so.8 is in your library path!
[1]    2253274 IOT instruction (core dumped)  python tts.py
(openvoice) ╭─arthur at aquarelle in ~/dev/ai/OpenVoice on main✘✘✘ 24-05-07 - 23:45:35
╰─(openvoice) ⠠⠵     

What am I doing wrong?

This is ubuntu 23.04, and when I ran into this error I did:

sudo apt install libcudnn9-static-cuda-12    
sudo apt install libcudnn8 libcudnn8-dev   

But it didn't help.

I have CUDA and everything installed, I run dozens of different CUDA/Pythorch/AI related projects on this machine including trying out most of the TTS stuff available on github.

Any help very welcome.

Thank you.

@HarewVlad
Copy link

Try to do the following:

export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__))'`

@arthurwolf
Copy link
Author

arthurwolf commented May 10, 2024

It worked, though I also had to install libcublass. I'll check the documentation again to see if maybe I missed some kind of step.

(openvoice) ╭─arthur at aquarelle in ~/dev/ai/OpenVoice on main✘✘✘ 24-05-10 - 13:52:06
╰─(openvoice) ⠠⠵ export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__))'`
(openvoice) ╭─arthur at aquarelle in ~/dev/ai/OpenVoice on main✘✘✘ 24-05-10 - 13:52:43
╰─(openvoice) ⠠⠵ python tts.py                                                                                                                                                        on main|…8
/home/arthur/.anaconda3/envs/openvoice/lib/python3.9/site-packages/torch/nn/utils/weight_norm.py:28: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.
  warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.")
Loaded checkpoint 'checkpoints_v2/converter/checkpoint.pth'
missing/unexpected keys: [] []
OpenVoice version: v2
Traceback (most recent call last):
  File "/home/arthur/dev/ai/OpenVoice/tts.py", line 23, in <module>
    target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, vad=False)
  File "/home/arthur/dev/ai/OpenVoice/openvoice/se_extractor.py", line 146, in get_se
    wavs_folder = split_audio_whisper(audio_path, target_dir=target_dir, audio_name=audio_name)
  File "/home/arthur/dev/ai/OpenVoice/openvoice/se_extractor.py", line 28, in split_audio_whisper
    segments, info = model.transcribe(audio_path, beam_size=5, word_timestamps=True)
  File "/home/arthur/.anaconda3/envs/openvoice/lib/python3.9/site-packages/faster_whisper/transcribe.py", line 308, in transcribe
    encoder_output = self.encode(segment)
  File "/home/arthur/.anaconda3/envs/openvoice/lib/python3.9/site-packages/faster_whisper/transcribe.py", line 610, in encode
    return self.model.encode(features, to_cpu=to_cpu)
RuntimeError: Library libcublas.so.11 is not found or cannot be loaded
(openvoice) ╭─arthur at aquarelle in ~/dev/ai/OpenVoice on main✘✘✘ 24-05-10 - 13:52:59
╰─(openvoice) ⠠⠵ sudo apt install libcublas11                                                                                                                                         on main|…8
[sudo] password for arthur: 
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
  libcublaslt11
The following NEW packages will be installed:
  libcublas11 libcublaslt11
0 upgraded, 2 newly installed, 0 to remove and 11 not upgraded.
Need to get 259 MB of archives.
After this operation, 670 MB of additional disk space will be used.
Do you want to continue? [Y/n] 
Get:1 http://fr.archive.ubuntu.com/ubuntu lunar/multiverse amd64 libcublaslt11 amd64 11.11.3.6~11.8.0-3 [212 MB]
Get:2 http://fr.archive.ubuntu.com/ubuntu lunar/multiverse amd64 libcublas11 amd64 11.11.3.6~11.8.0-3 [46,7 MB]
Fetched 259 MB in 7s (39,1 MB/s)                                                                                                                                                                
Selecting previously unselected package libcublaslt11:amd64.
(Reading database ... 721648 files and directories currently installed.)
Preparing to unpack .../libcublaslt11_11.11.3.6~11.8.0-3_amd64.deb ...
Unpacking libcublaslt11:amd64 (11.11.3.6~11.8.0-3) ...
Selecting previously unselected package libcublas11:amd64.
Preparing to unpack .../libcublas11_11.11.3.6~11.8.0-3_amd64.deb ...
Unpacking libcublas11:amd64 (11.11.3.6~11.8.0-3) ...
Setting up libcublaslt11:amd64 (11.11.3.6~11.8.0-3) ...
Setting up libcublas11:amd64 (11.11.3.6~11.8.0-3) ...
Processing triggers for libc-bin (2.37-0ubuntu2.2) ...
(openvoice) ╭─arthur at aquarelle in ~/dev/ai/OpenVoice on main✘✘✘ 24-05-10 - 13:53:51
╰─(openvoice) ⠠⠵ python tts.py                                                                                                                                                        on main|…8
/home/arthur/.anaconda3/envs/openvoice/lib/python3.9/site-packages/torch/nn/utils/weight_norm.py:28: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.
  warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.")
Loaded checkpoint 'checkpoints_v2/converter/checkpoint.pth'
missing/unexpected keys: [] []
OpenVoice version: v2
/home/arthur/.anaconda3/envs/openvoice/lib/python3.9/site-packages/torch/functional.py:665: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.
Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:873.)
  return _VF.stft(input, n_fft, hop_length, win_length, window,  # type: ignore[attr-defined]
/home/arthur/.anaconda3/envs/openvoice/lib/python3.9/site-packages/torch/nn/modules/conv.py:456: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.)
  return F.conv2d(input, weight, bias, self.stride,
Processing TTS...
Processing EN_NEWEST...
Downloading config.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3.41k/3.41k [00:00<00:00, 1.64MB/s]
/home/arthur/.anaconda3/envs/openvoice/lib/python3.9/site-packages/torch/nn/utils/weight_norm.py:28: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.
  warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.")
Downloading checkpoint.pth: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 208M/208M [00:01<00:00, 111MB/s]
 > Text split to sentences.
Did you ever hear a folk tale about a giant turtle?
 > ===========================
  0%|                                                                                                                                                                      | 0/1 [00:00<?, ?it/s]Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForMaskedLM: ['cls.seq_relationship.weight', 'cls.seq_relationship.bias']
- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
/home/arthur/.anaconda3/envs/openvoice/lib/python3.9/site-packages/torch/nn/modules/conv.py:306: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.)
  return F.conv1d(input, weight, bias, self.stride,
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:06<00:00,  6.09s/it]
/home/arthur/.anaconda3/envs/openvoice/lib/python3.9/site-packages/torch/nn/modules/conv.py:456: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.)
  return F.conv2d(input, weight, bias, self.stride,
Processing EN...
/home/arthur/.anaconda3/envs/openvoice/lib/python3.9/site-packages/torch/nn/utils/weight_norm.py:28: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.
  warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.")
 > Text split to sentences.
Did you ever hear a folk tale about a giant turtle?
 > ===========================
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  6.28it/s]
 > Text split to sentences.
Did you ever hear a folk tale about a giant turtle?
 > ===========================
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  6.72it/s]
 > Text split to sentences.
Did you ever hear a folk tale about a giant turtle?
 > ===========================
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 10.68it/s]
 > Text split to sentences.
Did you ever hear a folk tale about a giant turtle?
 > ===========================
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  7.00it/s]
 > Text split to sentences.
Did you ever hear a folk tale about a giant turtle?
 > ===========================
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  7.32it/s]
Processing ES...
Downloading config.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3.43k/3.43k [00:00<00:00, 4.08MB/s]
Downloading checkpoint.pth: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 208M/208M [00:02<00:00, 102MB/s]
 > Text split to sentences.
El resplandor del sol acaricia las olas, pintando el cielo con una paleta deslumbrante.
 > ===========================
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00,  1.17s/it]
Processing FR...
Downloading config.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3.40k/3.40k [00:00<00:00, 3.82MB/s]
Downloading checkpoint.pth: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 208M/208M [00:01<00:00, 108MB/s]
 > Text split to sentences.
La lueur dorée du soleil caresse les vagues, peignant le ciel d'une palette éblouissante.
 > ===========================
Downloading pytorch_model.bin: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 445M/445M [00:03<00:00, 112MB/s]
Some weights of the model checkpoint at dbmdz/bert-base-french-europeana-cased were not used when initializing BertForMaskedLM: ['cls.seq_relationship.weight', 'cls.seq_relationship.bias']MB/s]
- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:06<00:00,  6.34s/it]
Processing ZH...
Downloading config.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.30k/2.30k [00:00<00:00, 5.02MB/s]
Downloading checkpoint.pth: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 208M/208M [00:02<00:00, 102MB/s]
 > Text split to sentences.
在这次vacation中,
我们计划去Paris欣赏埃菲尔铁塔和卢浮宫的美景.
 > ===========================
  0%|                                                                                                                                                                      | 0/2 [00:00<?, ?it/s]Building prefix dict from the default dictionary ...
Dumping model to file cache /tmp/jieba.cache
Loading model cost 0.477 seconds.
Prefix dict has been built successfully.
Downloading pytorch_model.bin: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 672M/672M [00:06<00:00, 108MB/s]
Some weights of the model checkpoint at bert-base-multilingual-uncased were not used when initializing BertForMaskedLM: ['cls.seq_relationship.weight', 'cls.seq_relationship.bias']:00, 108MB/s]
- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:10<00:00,  5.01s/it]
Processing JP...
Downloading config.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3.43k/3.43k [00:00<00:00, 5.00MB/s]
Downloading checkpoint.pth: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 208M/208M [00:02<00:00, 102MB/s]
 > Text split to sentences.
彼は毎朝ジョギングをして体を健康に保っています.
 > ===========================
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.84it/s]
Processing KR...
Downloading config.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3.40k/3.40k [00:00<00:00, 1.33MB/s]
Downloading checkpoint.pth: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 208M/208M [00:01<00:00, 113MB/s]
 > Text split to sentences.
안녕하세요! 오늘은 날씨가 정말 좋네요.
 > ===========================
  0%|                                                                                                                                                                      | 0/1 [00:00<?, ?it/s]you have to install python-mecab-ko. install it...
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
        - Avoid using `tokenizers` before the fork if possible
        - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Collecting python-mecab-ko
  Downloading python_mecab_ko-1.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.4 kB)
Collecting python-mecab-ko-dic (from python-mecab-ko)
  Downloading python_mecab_ko_dic-2.1.1.post2-py3-none-any.whl.metadata (1.4 kB)
Downloading python_mecab_ko-1.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (578 kB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 578.4/578.4 kB 9.6 MB/s eta 0:00:00
Downloading python_mecab_ko_dic-2.1.1.post2-py3-none-any.whl (34.5 MB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 34.5/34.5 MB 9.9 MB/s eta 0:00:00
Installing collected packages: python-mecab-ko-dic, python-mecab-ko
Successfully installed python-mecab-ko-1.3.5 python-mecab-ko-dic-2.1.1.post2
Downloading pytorch_model.bin: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 476M/476M [00:04<00:00, 109MB/s]
Some weights of the model checkpoint at kykim/bert-kor-base were not used when initializing BertForMaskedLM: ['cls.seq_relationship.weight', 'cls.seq_relationship.bias']M [00:04<00:00, 114MB/s]
- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.42s/it]
TTS processing complete. Check the outputs in: outputs_v2
(openvoice) ╭─arthur at aquarelle in ~/dev/ai/OpenVoice on main✘✘✘ 24-05-10 - 13:55:22
╰─(openvoice) ⠠⠵ ls     

thanks a lot !

@lazzarello
Copy link

Updating the library path to include the python virtual env works but speaker embeddings depend on nvidia-cublas-cu11 and will break with version 12. Error output is

Traceback (most recent call last):
  File "/home/lee/src/OpenVoice/example.py", line 16, in <module>
    target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, vad=False)
  File "/home/lee/src/OpenVoice/openvoice/se_extractor.py", line 146, in get_se
    wavs_folder = split_audio_whisper(audio_path, target_dir=target_dir, audio_name=audio_name)
  File "/home/lee/src/OpenVoice/openvoice/se_extractor.py", line 28, in split_audio_whisper
    segments, info = model.transcribe(audio_path, beam_size=5, word_timestamps=True)
  File "/home/lee/src/OpenVoice/.venv/lib/python3.10/site-packages/faster_whisper/transcribe.py", line 308, in transcribe
    encoder_output = self.encode(segment)
  File "/home/lee/src/OpenVoice/.venv/lib/python3.10/site-packages/faster_whisper/transcribe.py", line 610, in encode
    return self.model.encode(features, to_cpu=to_cpu)
RuntimeError: Library libcublas.so.11 is not found or cannot be loaded

I was lucky enough to have a copy of that shared library elsewhere and manually added it to the LD_LIBRARY_PATH.

@xiangzy999
Copy link

Updating the library path to include the python virtual env works but speaker embeddings depend on nvidia-cublas-cu11 and will break with version 12. Error output is

Traceback (most recent call last):
  File "/home/lee/src/OpenVoice/example.py", line 16, in <module>
    target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, vad=False)
  File "/home/lee/src/OpenVoice/openvoice/se_extractor.py", line 146, in get_se
    wavs_folder = split_audio_whisper(audio_path, target_dir=target_dir, audio_name=audio_name)
  File "/home/lee/src/OpenVoice/openvoice/se_extractor.py", line 28, in split_audio_whisper
    segments, info = model.transcribe(audio_path, beam_size=5, word_timestamps=True)
  File "/home/lee/src/OpenVoice/.venv/lib/python3.10/site-packages/faster_whisper/transcribe.py", line 308, in transcribe
    encoder_output = self.encode(segment)
  File "/home/lee/src/OpenVoice/.venv/lib/python3.10/site-packages/faster_whisper/transcribe.py", line 610, in encode
    return self.model.encode(features, to_cpu=to_cpu)
RuntimeError: Library libcublas.so.11 is not found or cannot be loaded

I was lucky enough to have a copy of that shared library elsewhere and manually added it to the LD_LIBRARY_PATH.

I have encountered this problem. Can you tell me how to handle it? Thank you!

@vladlearns
Copy link

Made a pull, solving all of this in Docker: #264
Also, check #215 (comment) for local windows fix

@LordAlex2015
Copy link

Updating the library path to include the python virtual env works but speaker embeddings depend on nvidia-cublas-cu11 and will break with version 12. Error output is

Traceback (most recent call last):
  File "/home/lee/src/OpenVoice/example.py", line 16, in <module>
    target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, vad=False)
  File "/home/lee/src/OpenVoice/openvoice/se_extractor.py", line 146, in get_se
    wavs_folder = split_audio_whisper(audio_path, target_dir=target_dir, audio_name=audio_name)
  File "/home/lee/src/OpenVoice/openvoice/se_extractor.py", line 28, in split_audio_whisper
    segments, info = model.transcribe(audio_path, beam_size=5, word_timestamps=True)
  File "/home/lee/src/OpenVoice/.venv/lib/python3.10/site-packages/faster_whisper/transcribe.py", line 308, in transcribe
    encoder_output = self.encode(segment)
  File "/home/lee/src/OpenVoice/.venv/lib/python3.10/site-packages/faster_whisper/transcribe.py", line 610, in encode
    return self.model.encode(features, to_cpu=to_cpu)
RuntimeError: Library libcublas.so.11 is not found or cannot be loaded

I was lucky enough to have a copy of that shared library elsewhere and manually added it to the LD_LIBRARY_PATH.

I have encountered this problem. Can you tell me how to handle it? Thank you!

Fixed it with sudo apt install libcublas11

I saw it in #225 (comment)

@CyberT33N
Copy link

This is not working with cuda 12 on ubuntu 24.04. Any suggestions?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

7 participants